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Quantum robust control

@ A challenge in model-based quantum control is to devise laser control strategies that are
robust to parameter uncertainty and input noise

@ Input field noise: noise in spectral amplitudes and phases associated with a frequency domain shaped
laser pulse.

@ Parameter uncertainty: uncertainty in the dipole matrix (control vector field) elements

@ Approaches to combat noise and uncertainty in model-based quantum control:

@ Feedforward control

@ Feedback control? Feedback currently impossible for ultrafast dynamics.

© Robust control: (t) = £(p(t)) where p(t) is filtered from real-time measurement data, since
p(,t) # p(6o, t); robust control: so p(8, t) ~ p(6o, t). can exploit rich pulse shaping resources to
minimize sensitivity to field and parameter uncertainty.

Q@ First-principles electronic structure theory combined with efficient parameter estimators based on
time-resolved quantum measurement data can reduce parameter uncertainty.

o Classical vs quantum uncertainty: input field noise and system parameter uncertainty are
classical; the pdfs for observation outcomes given an exactly known wavefunction is
quantum. We seek to combat the classical uncertainty.
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Estimation of quantum states and Hamiltonians

o State estimation. Application: adaptive feedback (open loop) control of multiple output
processes. Probabilities of observations px = Tr(p(0)|k)(k|) are linear in parameters

p = p(0)

1 1N —1
NIN+§ FZI Qj)\j,

2
6€By_y CRVL

(01,....,0p2_1)
where ); are generators of SU(N).
o Dynamical parameter estimation. Application: robust control; assessment of worst case
control performance for optimal control.

Challenge: Probabilities of observations are nonlinear in Hamiltonian parameters.



Estimation of quantum Hamiltonians

o Assume Hy known (from resonant frequencies). Parameterization of u for Rb:

0 6, 6, O 0
66 0 0 63 O
uw@) =16 0 0 6, O
0 63 6, 0 65
0 0 0 6 O

@ For a constant field,
p(8, tk) = exp[—i(Ho — p(8)e)tk]p(0) expli(Ho — 1(0)e)tk]

@ Unlike spectroscopic experiments used to obtain transition dipole elements for Rb, can be
generalized to molecules
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Asymptotically Efficient Parameter Estimators: MLE Theory

o Likelihood function of parameters: L(é|x) is joint density of observations x expressed as
function of unknown parameter vector 6.

8 InL(0]x)

o Fisher information: /() = —E [ 56907

(CRB) for consistent estimators.

]; [1(60)]~ Y is called the Cramer-Rao lower bound

@ Maximum likelihood estimator . ~
OmL = arg max L(0]x)

is asymptotically efficient estimator, achieves CRB
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MLE Results: State Estimation

o Given measurement times (ti,-- - , ty); measure the energy through diagonal observable
Hy = Z{V:l E;|i)(i| at each time

@ The FI can be maximized prior to collecting experimental data, so that we collect the most
information possible about the state parameters from a given number of measurements

Achieve by shaping control fields &(t): m(ax [11(8)]|

Applying fields £(t) that maximize Fisher information are found to improve the quality of
parameter estimates



Optimal State estimation, dynamic



MLE of atomic Hamiltonian parameters

@ For Hamiltonian estimation, likelihood function for constant field ¢ is

N+1 my

InL(0|x) = ZZIn P (0

k=1 j=1
N+1 my

>3 InTelp(6, 1)

k=1 j=1
p(0, ti) = exp[—i(Ho — p(0)e) ti] p(0) expli(Ho — pu(0)e) 1]

where x denotes the data, my is the number of observations made at time t, for a
time-independent Hamiltonian (constant control field e(t)), and F; = |i)(i] is the outcome of

the j — th observation.
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MLE of atomic Hamiltonian parameters (cont'd)

@ Covariance matrix of unknown dipole element parameters:
Y =179

@ Due to nonlinearity of likelihood for Hamiltonian estimation, choice of optimal measurement
times important: choose the g measurement times or control the unitary propagators by
(robust) laser fields to maximize Fisher information:

max

16 or max ||/(6
W WO or max (D))

after an initial guess for 6 is obtained from the first experiment or electronic structure theory
and where

P(0,£()IFr) = Tr { U(=(), t, 0)p(0)U' ((), 4, O)F: }

o Adaptively update measurements given § = arg max L(f]x;), given measurement outcomes
x; from experiment i
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Bayesian Estimation of Hamiltonian parameters

@ The Hamiltonian identification problem is generally ill-posed - due to nonlinearity of
likelihood, there are multiple solutions. Thus p(@) is not identifiable by frequentist inference

@ For nonlinear estimation, the parameter uncertainties returned by frequentist methods
require the choice of one out of the many 6's that may maximize the likelihood

@ An alternative is Bayesian Hamiltonian estimation, which is based on the notion of a prior
plausibility distribution on the space of parameters 6:

L@|x)p(0]1)do
JoL@1x)p(8]1)dé’

o Prospect: In addition to parametric model, have ab initio estimates for parameters!

p(O|xAI)do=

o Bayesian Hamiltonian estimation can a) use electronic structure calculations along with
experimental data in constructing parameter estimates 0; b) render problem identifiable



Estimation of field noise

@ Linear frequency domain analysis is common approach to robust controller design in
engineering

o Wiener-Khinchin Theorem: a) Fourier transform of autocorrelation function gives noise
power spectrum

oo
|F(w)| = / exp(iwT)act(t, t + 7) dT,
0

where |F(w)| denotes the power spectral density, T is lag, and
f(t,t') = acf (t,t') = E[6u(t)du(t + 7)] is the noise autocorrelation function for a
stationary, mean-zero noise process du(t)

o For linear control systems, power spectrum can be used to assess robustness; for bilinear
systems, must work directly in time-domain: sample field at different time lags 7 to estimate
acf or obtain from laser's known noise spectrum - if given noise power spectrum for a laser
source, use W-K theorem to obtain autocorrelation function
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Perturbation theory and the Dyson expansion

o The exact expression for the transition amplitude is ¢;;(t) = (j|U,(t)|i); if initial state is |i),
Gi(t) = ¢j(t)
@ To approximate it to arbitrary order, insert perturbation expansion for U,(t):

ém:—w%Aﬂmﬂw%

t"—l
ci(t) = (l(— /\ / / S H (") dt" - dt']i)

@ Then, the total transition probability between states i and j at time t in n-th order
perturbation theory is

|GH(0) + () + -+ HOP = [h(B) + GO+ + ()]
x [ch() + (&) + -+ ci(e)]

(which demonstrates the property of quantum interference between paths due to the
presence of coherence terms (cﬁ(t) *cjyl(t))



Quantum control mechanism identification: orders modulation

For bilinear systems, we can identify the contributions of each order in the Dyson series to
the controlled time evolution by system-encoding and Fourier transform-based techniques.
Let Vi(t,s) = V,(t) exp(vys) for a specified parameter ~y

o Operationally speaking we need to solve the Schrddinger equation:

dU/(t7 S) _

i) Ui(es) e

o Deconvolute via inverse FT to obtain U,(T):

o0
Ui(T,v) = / U;i(T,s)exp(—ivs) ds

The contribution of each m-th order pathway U[" to the mechanism is obtained from Usi(v);
each pathway's contribution is encoded by a particular value of

o Show some examples
Ui(T,y =) = ci(T)
Uii(T, 7 = 2%0) = ¢(T)
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MI of interferences

ci x g+ ait g = (U GIUIN + (Ul (Ul

o Constructive interference: cﬁ * c + cl* 2 = 2Re (c * cjll) >0

@ Destructive interference: cfl * c + cl* 12, = 2Re (cﬂ * 1[) <0

Obtain cjl7 c2’s (with sums over all intermediate states) using the mechanism id transform
techniques above

o Interferences between specific pathways can also be identified, using other mechanism id
techniques reviewed below
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Transition pathways for frequency domain-shaped fields: complex

representation of field

@ Now use the Fourier series representation of the field: ) )
e(t) = [22, dw A(w)exp(i¢(w)) exp(—iwt) and H(t) = exp(fHot)[—u - e(t)] exp(—+ Hot)

o (| [y Hi(t) dt|iy = — [y e(t)(jlexp(+ Hot)pexp(— i Hot)|i) dt
h(0) = 3l [ (o) expl (5 — Ee)e

= 2l [ do M) explio)) [ exn((L (6~ )~ w)ejat
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Transition amplitudes for frequency-domain shaped fields: one-photon path

(il exp(uHot)e(t)mexp(—eHot)|i) = (jluli) Y Alwi) explu(Ej — E;)t] cos(wjt + p(w))
k=1

T
|| expli(8 — Bt cos(unt + () de =

T
1{ exp(quk)/0 exp [«(Ej — Ej +wy)t] dt+

2

-
+ exp(—zqﬁﬂ/o exp [z(Ej —E — wk)t] dt}

n

H(T) = i) 3 A / expli(E; — E7)t] cos(wrt + d(wx)) d

,_.

n

2 T
= 2Gluli) - Al (xp(ise) [ exp [~ Ei+wi)e] det
k=1 0

,
+ eXP(—mﬁk)/O exp [W(Ej — Ej — wy)t] dt}
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Dyson expansion of transition amplitude for frequency-domain shaped fields

(] exp(eHot)e( ) exp(—aHot) i) = (iluli) S Alwi) explo( £ — Er)t] cos(wrt + d(wr))
k=1

[eS) N N
G(T)=>_@"> - > Glulhm—1)(m-1lpllm—2) - (hlpli)x

m=1 h=1  Ip_1=1

T n
/0 S Alw) expli(E; — Ep, 1 )tm] cO8{wk tm + H(ek))

km=1

t, N
e / Z A(wi, ) exp[e(Ej, — Ej)t1] cos(wig t1 + ¢(wy, ) dty - - dtm
0 =1
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Quantum control mechanism identification: full dipole modulation

o For bilinear systems, we can identify the contributions of each pathway to the controlled
time evolution by system-encoding and Fourier transform-based techniques

@ The elements vj(t) of the interaction picture Hamiltonian V;(t) are multiplied by
modulation functions gjx = exp(ivjks) to encode the dynamics and enable the extraction of
pathway contributions. With the modulation, the modulated Schrédinger equation for a
N-dimensional system is:

V11§tgg11gsg V12§tgg1zgsg e V1NEfgg1NESg

v21(t)g21(s v22(t)g22(s oo van(t)gan(s

% =—i U(t,s), (2)
vvi(t)gni(s)  vina(t)gna(s) -+ vww(t)enn(s)

due to which the modulated matrix elements of the interaction propagator become
I yeee almf
Us(T,s) = Z Uf} "(T)exp (Z(Wﬂm,l + -+ 7/1,')5) ) (3)
By

Ion—

where the unmodulated pathway Ug’m’ (t) is given as

T ty
Uﬁ%""”"’*(n:(z)’"/o /0 FIVi(tm) 1) - (R Vi(E) i)ty dtm ()
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Dipole encoding and decoding

@ Dipole encoding would reveal the contribution of the dipole moments in the transition
amplitude. Here, each of the dipole matrix elements is encoded with a Fourier function:

g — Hpge"PI°,
«@ «@
Hpl? = ppkd e (@papa)s, (5)
with vgp = Ypq-

@ The encoded and propagated unitary propagator consists of the different order dipole
pathways with the encoded total transition amplitude:

JI T S) Z Z UJ/ T a)e( P<q&pq’qu)s. (6)
m=0aeM

@ Deconvolution of the total transition amplitude leads to the decoded dipole pathway, i.e.
Ui(T,v = 3 p<q @papq) = Uii( T, d).
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Quantum control mechanism identification: amplitude modulation

@ Modulation scheme:
A
Ax = A(wk) — A(wk) exp(vvks)
A% (i) — A%(wx) exp(aais)
@ The m-th order MI amplitude is comprised of terms of the following type:
(") A(wig JA(Wi, ) + - Alwiy ) exple(Vig + ++ + Vi )S]X
N N
XD e > TR T R (i) X

h=1  lp_1=1
T
X / exp[y(Ej — Ej,_,)tm] cos(wy,, tm + ¢(wk,,)) X
0
tm
X / exp[v(Ej — Ej,_,)tm—1] cos(wk,, ,tm—1 + d(wk,,)) -
0

ty
. / explu(E; — Ei,)tr] cos(wr, t1 + b(wi, ) dts - - - dtm_1
0
o Deconvolution: U;i(T,~) = [ U;i(T,s)exp(—wys) ds
@ The above term can be extracted at frequency vy, + - - + 7y, if this frequency is unique:
Ui(T:y =+ 4 Yk) = (AWK )A(wky) - Alwig,) -

o Extract all terms containing AT -+ AY", 3", o = m, through amplitude
Ui(T,y = a1y + -+ + anvn)
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Quantum control mechanism identification: phase modulation

@ Modulation scheme:

1

> D Alwi {exp(uen) explut) + exp(—16x) exp(— i)} -

k=1

— % Z A(wi){exp(u(dk + k) exp(wwi t) + exp(—(2dk + k) exp(—wwit)}
k=1

@ Deconvolution:

Ui(T,v) = /700 U;i(T,s)exp(—1ys) ds
T t
Ui(T,y=2vw) = — A% (wy) exp(2ed) [ZUNI)UWU)/(; /0 .,_dtldt:|

T t
Ui(T,y = —2k) = —A%(wi) exp(—2uhk) [ijuummw /0 /O ---dt’dr]
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Quantum control phase encoding

o For phase encoding, the modulation scheme is as follows:
etk eFuSktks),

"k Pk —y grork(PktVks) (7)

@ The encoded transition amplitude is:

K
Ui(T,s) = > exp {Zzak (éx +’Yk5)] x
& k=1
S G flae,

M=Mmin (kysee skm) k=

N T

w(wji o w tm
E:uﬂmfl/ e mmt T X
/ 0
m—1

"X Zu:ll/ it gty . dty, (8)

h=1
where mpin, by have been defined in (10).
Uii(T,s) = > gezx Ui(T,d) exp (z Zszl ak'yks> along with (7) and (??) can therefore be
used to define phase pathways U;i(T, d).
@ Deconvolution of the transition amplitude term yields phase pathways in a way analogous to
the amplltude counterpart. Note that in the case of phase modulation, the enceding is
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Outline

© Quantum control robustness analysis: moments of the transition amplitude
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Converting moments of transition amplitudes into moments of observable

expectation values

o Can obtain moments for expectation value of any quantum observable (including Pj for any
states j, /) given the moments of all transition amplitudes
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Expression for amplitude pathways

urn - ()" 3 T1A

aeM k=1

S S / €17 cos(uny tm + Bk ) x

(kp,e+ km)/m 1

2
- X Z M1 / ef(wnitt) cos(wi, t1 + ¢(wk,)) dt1 - - dtm
0

where the sum Z(kl e ) isoverall1 < ki < K, i=1,---,m such that mode k appears in the
multiple integral oy times.
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T) - amplitude noise

@ Denote by ¢ ... ,, the m-th order Ml amplitude at frequency a1v1 + - -+ + anyn divided by
the product of field amplitudes appearing in that expression:

o = Ui(T,y = cry1 + -+ anvn) /(AT - AD")

Qq, 00

E Qi = m.
i

We denote by cq;,... ,a, the analogous expression without the constraint on the a; (i.e.,
without specification of the order of the amplitude).

o This Ml amplitude is a sum of

@y ot Qp

distinct terms.
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T) - amplitude noise (cont'd)

@ Assuming Ay, --- , A, are independent random variables, E[c;i(T)] can then be expressed as
follows (written respectively for Re ¢;i(T), Im ¢;i(T)):

E[Re,Im ci(T)]= > Re,Im cay, 0, B[AT] - E[A]"]

(ovg,eee )

o var ¢ji(T) can be expressed:

2
var (Re,Im ¢;(T)) =E > ReIm cay,. a, (AT? -+ AZ" — B[ATY]- ..E[Agn])}
(a1, ,an)
= Z 2Re,Im cqq,... ,anca“,,’a; X
(o1, san)(af o )

x (E[Af‘”“i] - E[AS7T0] — B[A] - BASTJE[AL] . E[Aﬁ“’n]) }+
+ Z Re, Im cil,,_, o (E[Afo‘l] - E[A2n] — E2[A§11] . ..EZ[Agn])
(ag,- ,an)

@ The above sums can be truncated to obtain approximations for the moments of the
transition amplitude. An upper bound on the error in the moment calculations due to
omission of terms in the sum with Z, «; > Mmax will be provided
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var Uj; (cont'd)

/ !
var (ci(T)) > = > 2Re (Caran€ly o) X BIATT]BLATT O
(af e sap)<(an,-,an)
+ 3 Jcar o anPEAZ] - B[AZ] 4
(ag,-+ o)
% Ot/
_ > 2Re (CalvwanCZ;,--~,a') x E[AY] ... E[A2]E[AY] ..
(@, sap)<(a, san)
= D lcar, o anPEATY] - E2[AY"]

(o1, yoen)
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var Uj; (cont'd)

See RC notes 11/2013 for E[P};]
Note the similarity between the var Uj; and E [P};] expressions

Expressions were originally written separately in terms of real, imaginary parts to simplify
coding of both simultaneously, since var Uj; must be separated into real and imaginary parts

[var Uji|? can be written in a form similar to E [P}]:

(This form of the expression for Pj was previously provided in RC's quantum pathway
interference notes)

var Uj; is the second classical moment of a quantum transition amplitude; E [P}] is the first
classical moment of a quantum expectation

[var Uj,-|2 has applications to quantum gate control; consider Pareto minimization var Re Uj;
/ maximization of |E [U;]|? (or simply E [Re Uj]) toward the maximum value of 1
(assuming that is the target value of a quantum gate matrix element)

Allows interpretation of Pareto tradeoffs in terms of interference moments
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Moments of the transition probability

o First moment of transition probability:
E[Pi(T)] = B[(Re Gi(T)*] + E [ (Im 6i(T))?]

@ which is comprised of the following terms:

2
B [(Re,Im ¢(T))?] :EH S Re,Im cop e 0, A .A.Agn} ]

(a1, ,an)
U ’
= Z 2Re, Im Co‘lv“'vo‘ncai,-..,a;’ E[A?1+a1]”_E[Aﬁn+an]+
(ag,--- 7D¢n)#(0¢i,'-~ ,al)
Z Re, Im cghu_ ,a,,E[Afal] .. E[A%an]

(a1, ,on)
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var PJ,—E[ Uﬁ-‘\Z—i—Z Z Re (Uﬁ-‘U},”—‘/*) —E[P;] | *

a'<a

DIUFP+2 Y Re(Uf UF )| —E [P ]

a// O/N<D¢”

=B (S 2 X re i) ) «

a’<a

(S e 3 rewsu )| - R

Oé/l Ot”,<Oé,l
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var Pj; (cont'd)

SN U Plug P

ol

+ 4E Z Z ‘chix|2Re (UJ?H UJ%/”*) 4

ol <ol o

var P =E

wam | S0 re (gpug ) re (o) |+

<ol o <o

_ Ez[Pj,']
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var Pj; (cont'd)

2 1"
var Py = 3 3B [TTA™ | e Pleg” P+
a// [e% k
+4 Z ZE HAZak+ak+ak ‘ |Re (CJ-?HCJ-('-)/H*)—F

///<a//
artal+al +al!’ ’ "o
+4 30 3D E|JJAk el Re(cﬁ‘cﬁ*)Re(cﬁ‘ o *)+
a///<a// a/<a k
2
— E°[Pj]
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@ The first term above captures (classical) correlations between single pathway transition
probabilities

@ The second term above captures (classical) correlations between single pathway transition
probabilities and interferences

o The third term captures (classical) correlations between interferences
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Moments of interferences

o First moment of interference between all pathways of order m and order m’:

E[U7 U™ + U™ U] = E[2Re U;i™U;i™"]

’
« «
= E[2Re E Cay, e an ALt AR E CZL”_ A A ]
"
(o1 ern) (o] sac)
* aj+aj aptal
- ) 2Recar, o an€ly o ETATT U1 ELAT7T)
(@1, san), (@], af)

where 35, = m, Za;( =m.

@ This expression will be the basis for the plot of 1st moment of interferences expected below

@ We expect the expression and corresponding plots to help explain the downstream figures
representing the robust vs. non-robust interference pattern

Raj Chakrabarti
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Gaussian amplitude noise

o Assume A(wy) ~ N (Ag,02)
@ Then we have
E[A| = A
E[A2] =02+ A?
and
n «a o ]
E[A*] =E[(A-A)*] =) B[A])(—A)")
i=0 \ i (e —1)
where the coefficients are binomial coefficients,

0, « odd
(e —=1)0®, aeven

Bl(a- )] = {

and the E[A’] can be obtained recursively using the above expression starting with i = 3.
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Expression for dipole pathways

urm=(;)" > T wiex

aem  p=l,g>p

;
> Z Akm/ =1t cos(wy, tm + G(wiy)) X
0

(s s Im—1) km=1

- X Z A / e'wnitt) cos(wi, t1 + d(wy,)) dty - - - dtp
k=1

where the sum Z (- isoverall 1 </; <N, i=1,---,m— 1 such that frequency *wpq

sim—1)
corresponding to dlpole parameters fipq, [Lgp appears in the multiple integral apq times.
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(Dipole) transition pathways

o For simplicity, assume all elements of the dipole operator p are real and the diagonal

2
elements are all zero, so that p is parameterized by N ;N parameters.
o The vector of these parameters can be denoted § = [pa2, -+ ,,u(N,l)N]T.
o Now let Uji(T,0u, - ,ap2_y) be the sum of all terms in expression (..) for the transition
’ CN2_N
amplitude that contain p3,- - "U‘(N—ZI)N'
@ Then
Ui(T, a1, ,ape_y)
2
Cay, - ,app_y = 2N (9)

’ (b33 - “Hv-1n)

and the expressions for E[cj;] and var cj; are identical to those for amplitude noise, with
E[A;"] replaced by E[6;"]

@ In the encoding, it is necessary to set «y;; = j; in order to have
Ui(T,2y=am + - t+ap_yvp2_n) = Ui(T,a1, -+ ;ap2_y) as required, because the
corresponding dipole paraméters arze equal due to Hermiticityz(under the assumption above

of a real dipole)
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Moments of ¢ji( T) - Hamiltonian uncertainty

@ See above
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Gaussian Hamiltonian uncertainty (e.g., ML estimation)

o Let 0y ~ N (k,02) (see above)
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Expression for phase pathways

Uii(T, &) = exp (lzK:ak¢k> i (;ﬁ)m X
k=1

M=Mmin

b o T o )
byc(kys--+ km ) Wwj L +wi, )tm
X TIA A S, [ e
Im—l

(ki km) k=1

N t
X Z.“hi/ et gty - dity, (10)
h=1 0
where & € ZK, 1 < |kj| < K, W_k; = —wk;, bi(ky, -, km) denotes the number of times mode k

appears in the multiple integral, and mp,;, = Zszl |ak|. Note that a particular combination of

phases in a phase pathway does not uniquely specify the pathway order, unlike amplitude and
dipole pathways.
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T) - phase noise

o In progress
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Gaussian phase noise
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General noise and uncertainty distributions

o Expressions above for E[cj], var ¢ require expressions for higher moments of
noisy/uncertain manipulated input and system parameters like A, 11

o Higher moments can be provided in closed form for any uncertainty distribution for which
there exists an analytical Fourier transform

o Apply the characteristic (moment-generating) function ¢(s) of the probability distribution
function p(x) of the manipulated input or system parameter:
oo
o(s) = (exp(isx)) :/ p(x) exp(esx) dx
o If ¢(s) is available in closed form, the moments of x are obtained via
6"
n n
= (- s
60 = (o [ geta)]
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Example: Gaussian noise distribution

2
o Consider Gaussian noise: i.e., p(x) = \/% exp [(Xz_;;) ]
O

@ Then

59 = [ ) expls00) ax = enp (s - %)

o [ en (s = 55 )]

(%) = 3po” + 1i?
<X4> — 30_4 +6M20_2 +#4

@ Moments:

o Examples:

@ Applying the binomial expansion, we obtain any moment {((x — X)") via

n n

(x=%)" = (x") =3 <=
i=0 \ 1 (n—=1)
@ For any odd moment, we find
xMm=>" (=)
i=0 \ I (n—1)

and hence {(x — X)") = 0.
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Sensitivity to field noise

@ The transition probability is one objective function that can be expressed in terms of the
amplitudes cji. Here we consider leading order Taylor approximations for its moments (note
these can be obtained more accurately using the expressions above)

o We have
1 T T 1 T T
E[0J] ~ 5/ / H(t,t')E [Su(t)su(t’)] dt dt’ = 5/ / H(t, t")acf(t, t') dt dt’
o Jo o Jo

o Consider Hessian nullspace; #H(t, t’) is finite rank kernel:

H(t, ') = Tr {p©(T)[1s(t), p(t")]+ — O(T) (1) ppa(t’) + p(t)ppu(t)) }

which has rank 2N — 2, where N is Hilbert space dimension, for state-to-state population
transfer.

Prospect: Thus to second order, field noise at most frequencies does not affect population
transfer

o To second order, laser noise can only decrease E[Jnom + ¢J] since Hessian is negative
semidefinite
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Field noise (time-domain amplitude noise): var J, first order

@ A first-order approximation to the variance of population transfer fidelity due to field noise
can be found in closed form:

T T o 0 5J ,
varJ~/0 /0 E [6e(t)de(t')] 5(0) 5:(¢) dt dt’,

T T
:/ acf(t, t') 0 o) g
o Jo oe(t) de(t’)

where

= Tr{[po, ©(T)]u(t)}



Hamiltonian uncertainty: var J, first order

o A first-order approximation to the variance of population transfer fidelity due to Hamiltonian
parameter uncertainty can be found in closed form:

var J ~ Tr [ZV@J(V@J)T] ,
where
w0y = i1 {m. 0T [ U xeteyute) o

and X is the Hermitian matrix obtained by setting 6; =1, 6; =0, j # i in u(6).



2nd order distributional results: E[J], Hamiltonian parameter uncertainty

@ The leading term in the expansion for E[§J] due to parameter uncertainty is of 2nd order:

E[5J]

Q

%E[&‘)T’H(O, 0")66]

Q

%Tr (ZH(6,6"))

where H(6,0") = % denotes the Hessian matrix with respect to Hamiltonian parameters
o Parameter uncertainty can improve E[J]; consider overlap:
Tr (TH(0,01) = Tr (VAVTWIwWT)
=Tr (AVTVT)
where A > 0, and V is an orthogonal matrix

o How to search for fields where, given uncertainty spectrum, overlap with the directions in
parameter space associated with largest positive eigenvalues maximized



2nd order distributional results: E[J], Hamiltonian parameter uncertainty

o H(O,0') = b
T T
(i, j) = ﬂ{pe(r)/ iUt (6)Xe(£)U() dt /O iUt ()X (£ U(E) di+
0
T T
o(T)p / iUt (£)Xee(£) U(t) dit / iUt (6)Xe(t) U(t) de—
0 0
/T iUt (8)Xie(£)U(t) dt p/T iUt (6)Xe()U(t) dt ©(T)—
0 0
/T iUt (£)Xe(t) U(t) dt p/T iUt (£)X;e(£)U(t) dt O(T)+
0 0

T t
[0, 0(T)] /O iUt (£)Xie(£) U(t) /0 iUt () XGe(t) U(H) dt'dt}+

T t
[0, 0(T)] /0 /0 iU () Xe(t) U dt’ iUt (E)Xie(t) U(t) dt



Gradients and Hessians

1)
5o V(D) = UT()

0
g VD = U

6J 4
3e(t) = (VyF(U(T)), ?(t)U(T»

_ T s
=1 {[po, (T (T) 5 U(T)

= v { [po, (T)UN(TYU(T)u(e) }
= Tr {po, ©(T)]1()}



Gradients and Hessians (cont'd)

é
de(t’)

5207 (U1 (MEUN) Ul (Ot

H(t, t') = —iTr{po®(T) Ut (t)pU(t)+

+ in{@(T)Poﬁ Ut (6)uU(t)

é
oe(t’)

(Ut(Meu(Tm) Ut (uu(n)}

H(t,t') = Tr{pO(T)pu(t")u(t) + O(T)pu(t)u(t) — u(t)pp(t')O(T)
= u(t)pu(t)O(T) + [p, O(T)][u(t), u(t')]}



Gradients and Hessians (cont'd)

[VoU(t)], = —iU(t) /Ot Ut () Xe(t) U(E) dt’

T T
H(i,]) :Tr{pe(T)/0 iUT(t)Xe(t)U(t) dt /0 iUt () X;e(t)U(t) dt+
T T
o(T)p / iUt (8)Xie(8) U(t) dit / iUt (6)Xe(t) U(t) di—
0 0
/TiUT(t)st(t)U(t) dt p/TiuT(t)x,-e(t)U(r) dt O(T)—
OT OT
/ iUt () Xe(t)U(E) dt p / iUt (8)X;=(£) U() dt ©(T)+
° T ° t
o, 0(T)] /0 iUt (8)Xie(8) U(8) /0 iUT () Xe(¢)U() di'de+

T t
—[p,e(T)]/0 /OiUT(t’)Xja(t')U(t’) dt’ iUt (1) X;e(t)U(t) dt
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Worst-case quantum control robustness analysis

o Worst-case robustness analysis can also be carried out based on constrained maximization of
the distance between the nominal and worst-case values of the performance measure. These

approaches are based on leading order Taylor expansions. In a first-order formulation, the
problem can be expressed as

2 soT T
max [6J] = 60" (VoJ)' Voo, (11)
where
©=1{80]60"T71560 < x%(c)},

50 =6—10, (12)
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Worst-case quantum control robustness analysis (cont'd)

e Let x = X,;I(C)Q‘IM, where QT Q = X. Then under this change of variables the
constrained maximization problem (11) is mapped:
§J12 — 2()xTQT (Vo) (Vo) Qx. 13
max [dJ] erfglxK()XQ(e)(e)Q (13)
@ This problem has the form of a Rayleigh quotient [?], which has an analytical solution for

Jwe and Oue = O + 60uc, with 80y = arg max |6J|2 written in terms of a singular value
decomposition with appropriately chosen sign.
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Outline

@ mplementation of robustness analysis methods and use of alternate MI formulations
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Software implementation

@ Precalculation of required amplitude, Hamiltonian parameter and phase moments: higher
moments of the manipulated inputs like E[A] and system parameters 6 should be computed
once and reused in all transition amplitude expressions wherein they appear above.

@ Either specify a maximum series order mmax arbitrarily, or choose it based on a required
moment accuracy, using the upper bounds on moment approximation errors that will be
provided. Then precalculate all moments of the manipulated input or system parameters that
appear in the transition amplitude moment expressions up to order m

o Testing of the expressions for specified values (changes) in amplitudes, Hamiltonian
parameters, and phases: the first test for implementation of the MIl-based robustness analysis
methods is to compute the value of ¢j; for a specified (deterministic) change in the Ay or 6
using e.g.

Gi(T)= > ReIm cay,. 0, A7t - A"
(ag,ee0m)
and verify the approximation with direct Ml

o Even without implementing amplitude, phase and full dipole M, it is possible to do some
preliminary tests with just orders MI (the simplest type of MI). This however requires the
development of additional code that retrieves the ca,... o, with the help of orders Ml and
some linear algebra. The computational complexity of this method is greater.
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Computational complexity of quantum control robustness calculations

@ The transform-based techniques above greatly reduce the complexity of quantum control
robustness calculations, which would otherwise require direct evaluation of a very large
number of multiple integrals

o Generality: these methods for robustness analysis (and associated robust control algorithms
below) can be applied to any bilinear control system - general methodological contribution
for robust control of bilinear systems

o Need for stabilization: Most of the above M| formulations are non-Hermitian. Non-Hermitian
MI suffers from instability, especially for stronger fields and larger systems. There exists a
maximum evolution time beyond which the cq;,... ,a, cannot be retrieved. For such systems
the time domain must be subdivided into many small subdomains; the cq,,... .o, must then
be computed from the Ml amplitudes on each subdomain. This is computationally expensive

o Complexity of robustness calculations vis-a-vis Ml stabilization: Stabilization of Ml can
alleviate this problem, by reducing Ml amplitudes and hence the number of time-domain
subdivisions required

o Even prior to implementing amplitude, phase and full dipole M, it is possible to do some
preliminary tests of robustness analysis with just orders Ml (the simplest type of MI). This
however requires the development of additional code that retrieves the cqy,... o, With the
help of orders Ml and some linear algebra. The computational complexity of this method is
greater.

Raj Chakrabarti Quantum Control Robustness Analysis and Robust Ci May 14, 2014 61 /83



Outline

© Bounds on series expansion terms and accuracy of robustness analysis
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@ Need bound on norm of cay,... ,a, =

|ca, o anl =

Bounds on amplitude robustness analysis series expansion terms

o [(xluly)l <d, 1<x,y <N

N

N
Do D Gl ™R (P i) x

h=1  Ip_1=1

T
% [ explaE — Byt cos(en tn + 00, )%
0
tm
x / expl(E,_, — B, ) tm1] cos(wr, s tmo1 + Swk,_,)) - -
0

t2
. / exp[e(E), — Ei)t1] cos(wi, t1 + d(wy,)) dty -+ - dtm
0

T
/ exp[i(Ej — Ey,_, )tm] cos(wiy tm + d(why)) X
h=1  Ip_1=1 0

tm
X / eXp[’L(E/nH1 — Elm,g)tmfll COS(L:.)&Wi1 tm—1 + ¢(wkm71)) cee
0

ty
. / explu(Ey, — Ei)tr] cos(wr, t1 + b(wiy ) dts - -~ dtm
0
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Bounds on amplitude robustness analysis series expansion terms (cont'd)

N N T
Cagyrran D D> d’"/o |exp[e(Ej — Ei,,_, ) tm]|] cos(wiy, tm + (wi,, )| %

h=1  Ip_1=1

o
x / |l expla(E;, — En)t]l] cos(wiy t1 + d(wiy))| dty -~ - dtm
0

N _Tm
SZ 2; d g

< Nm—lde — (NdT)m
- m! Nm!

@ Use either d™ or sum of product of 1 matrix elements (latter tighter bound, but more
computationally intensive to calculate); former preferred

o Check this bound numerically and plot vs m
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Bounds on amplitude robustness analysis series expansion terms and

maximum series order computation

® U(T) ~ oy Up(T)
o UPN(T) =2 5¢Car,,anATt AR, gk =m, m € [1, mmax]

o E[U;i(T)] =~ X5y E[UR(T)]

o [E[UP(T)]| < R0 (S EIAT - EIAR]), Spak=m, m € (1 mma]
° Check this bound numerically and plot vs m

@ Mmax = Max m | (NaT)™ (CHEA] - E[AR"]) >, Sak=m

NmI
@ Bound on accuracy: E[U;(T)] — Em’“ax E[ ™7 = f:mmax E[ TNl
> E T)]‘ NdT <Z E[A] .. E[Agn]>

oo Meps

- (NdT) (ZE[AQI] E[Agnoz 5 (NdT <ZE[AM] E[Agn]>,

M=Mmax M=Mmax

where meps denotes the smallest m such that (D)™ NdT (>"& EIATY] - - -E[AR"]) < eps, eps
denoting the smallest floating point number that can be represented on the computer

o Compute mmax and bound on error for specified ¢

@ Note, it is possible to derive an analytical bound on the error, but it is less accurate and not
necessary
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Bounds on series expansion terms for first moment of the transition

probability

Mmax NdT)m+m a1+o¢i an+a:,
‘E [(Re Im (7)) ]’ 23 {2N2m'm”( ; /)E[Al ]-- B[S e L
m'<m o, san)#(al, o
m,
max (NdT) m - )
+ zjl (Nmi)? > EIAT---EA]
(1, scxn)

m
Zak_mZak_m mm S [1 mmax]
k

k!

E [(Re, Im Cj,‘(T))Z] = ZZ";{ E [(Re,lm Cji(T))fn]

NdT)m+m artal ool
‘E [(Re, Im cj,-(T))an < Z W Z E[A ] E[AT 4
m'<m (a1, an)#(af, - al)
NdT)?m o N
+ WATVE 5~ g mpaze),
(Nm!) ( )
Q1,7 ,Qp

Zak = m,Zaf( =m', mm € [1, mmax]
k k!

@ Check this bound numerically and plot vs m
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Bounds on series expansion terms for first moment of the transition

probability

’E [Pr(T)] ‘

Raj Chakrabarti

(nay N
Z ANl N2m!m’! Z E[A?I al]"'E[Ag “ ]+
m'<m (o, an)Aa], - oh)
(NdT)2m 2 20
+2W Z E[A;™]---E[AZ*"],
(augsee+ o)

Zak = m,Za; =m', mym € [, mmax]
P K
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Maximum series order computation: first moment of the transition

probability

@ Mmax = max m such that

/
(NdT)™tm o nta
>4 ] > BIASTT]. L B[AYT T+
m'<m T (e an)Aad o ad)
(NdT)2m
vl 3 EA B 2

(cv1,eee o)

Zak:m,ZaL:m’
K K

o Bound on accuracy: E[P;(T)] — 73 E[PF(T)] = X7 E[PT(T)I;

m=1 M=Mmax

where meps denotes the smallest m such that < eps, eps denoting the smallest floating point
number that can be represented on the computer

o Compute mmax and bound on error for specified ¢

@ Note, it is possible to derive an analytical bound on the error, but it is less accurate and not
necessary
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Outline

© Quantum robust control algorithms
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Pareto Tradeoffs in Robust Control

Figure : Pareto frontier of solutions to mean-variance optimal control problems.

@ Pareto frontier of robust control solutions:

{&t) | h(e(t) < h(E(t) v h(e(t) < h(E(1), Ve(t) # (1)}

o Eg., Ji(e(t)) = E[J(e(D)]], S2(e(t)) = —std J(e(2)) or fa(e(t)) = Juc(e(2))

o Importance/interpretation of user preferences: would one prefer lower expected performance
with more reliability?



Problems with unconstrained optimization approaches

o Expressions above for var J, E[6J] are approximations: inaccuracies can reduce fidelity if
E[J] used at each step of £(t) optimization

o Instead i) maximize nominal population transfer Jyom using only true value 6y; ii) constrain

Jrex and find fields e(t) that minimize var J or maximize E[§J].

o Alternatively, use robust optimization with the accurate expressions for moments obtained
with Ml



Constrained nonlinear control optimization

@ To obtain an expression for de(t) that maximize or minimize auxiliary costs while holding
Jmax , solve the Fredholm integral equation of the first kind

-
/o 6§(Jt) de(t) dt =0, (14)

with kernel 55([’) for de(t).

@ Since this integral equation has a separable kernel, it can be solved by writing the unknown
vector function de(t) in terms of < (t), then dz(t) = c%{t) + f(t) (where f(t) is a free

function, since the integral equation is underspecified) and we have

/()T(dgt)) +/ f(t(s—()dt—o

@ Solving for ¢, we find c_—[f0 (65(t) dt] ! fo 1‘(1.‘)6;S dt].

o Then ds(t) = F(£) — [y ( e ) dt'] 1 32 [T F(e) 52 dt!




Formulations of relevance to robust control (cont'd)

o To explore fields holding constant high values of J and E[0J] while reducing var J, let

oJ

a(s,t) = 3G —iTr{[po, O(T)]u(s, t)}
.
f(s, t) = ;;/(8::)

o Then propagate

T T
%ﬂ(sr%[[c [a(s. t) &(s t)]F(s,t') dt'| T Ma(s,t').g(s. 1)

where I's = fOT[a(s7 t') g(s,t)][a(s, ') g(s,t)]T dt'.



Exploring robust control fields

o Setting f(t) to the functional derivative of the appropriate auxiliary cost, and choosing
(0, t) = &(t), one can then solve the constrained optimization problem by iteratively solving
for de(s, t), with iterations indexed by algorithmic parameter s.

@ To explore fields holding a constant high value of E[J] while reducing var J, solve

Oe(s,t) _ a(s, t) T , N o
=8 (s, 0) YT /O F(s, ¢')a(s, t') dt
Y SE[6J]
s 1) = de(s, t)  de(s, t)
6 var J
fls t) = de(s, t)

o To maximize E[J] for given risk level (var J or Juc), switch the definitions of a(s, t) and
f(s:t)



Joint field/parameter-based robust control approaches

o Prospect: Multiplicity of control solutions and flexible pulse shaping permits formulation of
Hamiltonian parameter uncertainty robustness criteria as constraints

@ Since field uncertainty less severe, minimize var J or maximize E[J] due to field pdf among
fields obtained above

@ To explore fields holding a constant high value of E ;) [J] while reducing varg J,
formulation is analogous to above



Frequency domain gradient

.
SU(T) = fo(T)/O UT(8)ude(t) U(t) dt

(2

oo T
= _EU( T) /_oo dw <5A(w)/0 w(t)[exp(wwt) exp(ep(w)) + exp(—wwt) exp(—1p(w))] dt

:
fs‘j\g)’ == 3UT) [ (ol () + expl—st) exp(—1(w)] ot

= —1u(m) {exp(z¢(w)) /0 T () explust) dt + exp(—16(w)) /0 " () exp(—ut) dt}

o Compute time-domain integrals efficiently through FFT of p(t) (N(N + 1)/2 FFTs of
complex functions - N diagonal elements are real-valued) - Fourier transform provides both
1st and 2nd integrals above via pu(w) at all frequencies w

o For a given J, only need to compute FFT of one scalar function of time.
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Dyson series approximation of frequency domain gradient,

@ Alternatively, to avoid FFT's at each iteration, approximate with Dyson series via Ml
methods described above

o For example,

1 _
AL Re,Im ¢;;(T) = Z Re,Im coy,-- 0,01 AT LoAgn
(o1, ,an)
é _
%E[Re,lm Gi(T= > Relmcay, . a,01BIAT Y] E[AS"]

(@1, ,an)

5
é—Alvar (Re,Im ¢;(T)) = E[{ Z Re,Im cay,.o oy X

(a1, ,an)
2
X (ar AJ1TH A alE[A‘fl_l]---E[Af,""])} ]
where the latter two expressions follow from the fact that E is a linear operator.

o Less expensive to evaluate - reevaluation of time-domain integrals not needed at each
iteration

o Update MI periodically given tolerance setting

Raj Chakrabarti
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Frequency domain robust control optimization

o All the above expressions for deterministic robust control optimization algorithms carry over
to the frequency domain with time-domain gradient a(s, t) replaced by frequency-domain
gradient a(w, t), f(s, t), g(s, t) replaced by f(s,w), g(s,w)
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@ The above expressions for moments of J (amplitude and phase noise) can be used in robust
optimization algorithms that ensure that the worst case values of the field parameters in a
given iteration do not lie within a specified confidence interval of these parameters at the
next iteration

@ This approach is most useful if one is solving a single objective minimax problem using Jy.
rather than sampling the mean-variance frontier

@ To be implemented after implementation of the above deterministic and below stochastic
algorithms
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MOEA algorithms for sampling the mean-variance frontier

o Instead of controlling quantum expectation values of multiple observables, control classical
moments of expectation value of a single observable

@ Use the above MI expressions for the moments E[J], var J

@ AK to provide more details on the GA algorithms used



Outline

@ Results: atomic Rb
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Robustness analysis for first and second order pathways, amplitude noise

o AK preliminary results

Raj Chakrabarti Quantum Control Robustness Analysis and Robust Ci May 14, 2014 82 /83



Comparing robust and nonrobust quantum control mechanisms

(afb)

Figure : Left: Amplitudes of pathways contributing to the mechanism of a robust control field for population
transfer to 5D3/2 in atomic Rb. Right: Amplitudes of pathways for a comparatively nonrobust field inducing
the same transition.

o Robust fields generally exploit fewer pathways, quantum interferences
o For multilevel systems, multipathway interferences nonetheless required

@ Robustness of each pathway/interference to parameter uncertainty can be computed
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