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Coherent Chemistry

Control the outcomes of state-to-state transitions and chemical reactions by
exploiting coherent wave interferences in the dynamical evolution of molecules

One of few inverse problems for control of chemical reactivity that has been
solved

Optimal Control Theory: multiparameter optimization of spectral amplitudes and
phases



Linear and Bilinear Control Engineering

Bilinear control: dy
dt

= (A +
∑

i Bi ui (t))y(t); A,B are N × N

Quantum control: dψ
dt

= −i(H0 − µε(t))ψ(t)

Controllability:

span{[· · · [iHj4 , [iHj3 , [iHj2 , iHj1 ]]]]} = u(N),

Hj ∈ {H0, µ}.

Formulation of control problems:

max
ε(t)

J(U(T )); U(T ) = T exp[−i(H0 − ε(t)µ)]U(0),

1 Observable expectation value maximization: J1 = Tr(U(T )ρ0U†(T )O)
2 Control of dynamical propagators: J2 = −||W − U(T )||2

SISO vs MIMO problems



Adaptive Feedback Control (AFC)

Figure: A schematic depiction of the closed-loop process employed in adaptive feedback control
(AFC) of quantum phenomena. The input to the loop is an initial control guess. A current design
of the laser control field is created with a pulse shaper and then applied to the sample. The
outcome of the control action is measured, and the results are fed back to a learning algorithm.
The algorithm searches through the space of possible controls and suggests an improved field
design. Excursions around the loop are repeated until a satisfactory value of the control objective
is achieved.



AFC control landscapes

Figure: Schematic representation of a quantum control landscape. xi , xj indicate two of possibly
many control degrees of freedom, and J denotes the objective function value. Any point on the
landscape corresponds to a time-dependent control field.

Under suitable regularity conditions, control landscape is devoid of local traps!

δJ

δε(t)
= −iTr{[ρ(T ),O]µ(t)}



Prospects and Challenges for Molecular Control Engineering

Prospects

Ultrahigh duty cycle of AFC: due to ultrafast dynamics

Flexibility of pulse shapers (compare structure-based catalyst design)

Frequency stability of comb laser sources

Existence of parametric models

Linear dynamics

Challenges

Hamiltonian (system) uncertainty

Computational expense of simulation and inverse problem

Ultrafast dynamics renders time series Hamiltonian estimation nonlinear

Ultrafast dynamics renders real-time feedback difficult

Table: List of Prospects and Challenges for Molecular Control Engineering Compared to
Macro-Scale Engineering Control



Integrated Open Loop Control / Adaptive Feedback Refinement of
Molecular Dynamics

Figure: Integrated open loop / adaptive refinement scheme for control of quantum atomic and
molecular dynamics. Counterclockwise from top: 1) Hamiltonian Parameter Estimation:
Parameter estimates and associated confidence intervals for the atom/molecule are obtained by
applying maximum likelihood or Bayesian estimation. 2) Robust Control: Parameter distributions
are applied in robust control calculations of an optimal laser field that will drive components of the
atomic state to desired values. 3) AFC: The resulting laser field is generated on a Ti:sapphire laser
and the performance measure is refined by AFC using an online multiobjective evolutionary
algorithm.



Atomic Rubidium as a Model System

Figure: Electronic state level diagram of atomic rubidium (Rb) and dipole-allowed resonant
transitions (upward arrows). 5,6 denote the electronic principal quantum number, D,P denote term
symbols and the subscript denotes the total angular momentum of the electronic configuration.
The excited 5D states decay spontaneously to the 6P states, which emit visible photons by
fluorescence (blue arrows) that are detected by a spectrometer.

Why Rb? Limited parameter uncertainty

Later extend to molecular systems (e.g. LiRb dimer) with Hamiltonian uncertainty



Significant pathways for |4〉 max

(a) (b) (c) (d)

Figure: The 4 most significant Pathways in |4〉 population maximization in Rb.

Consider for example the third-order pathway

c4lk1(t) = (− i
~ )3〈4|

∫ t
0 HI (t′)dt′|l〉〈l |

∫ t′

0 HI (t2)dt2|k〉〈k|
∫ t2

0 HI (t3)dt3|1〉, which
passes from |1〉 to |4〉 through intermediate levels |k〉 and |l〉.

We can extract and distinguish all such pathways by mechanism identification
(Hamiltonian encoding) techniques, which label each pathway with a distinct
integer.
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Sources of uncertainty: input and parametric

Which is more important? Depends on application.

1 Input field noise: Spins

2 Hamiltonian parameter uncertainty: Molecules with frequency comb laser sources,
especially µ elements

Engineering approaches to combat:

1 Input field noise: Feedforward control, frequency domain analysis.

Prospect: limited field noise for frequency comb sources

2 Parameter uncertainty: Feedback control: ε(t) = ε(ρ̂(t)) where ρ̂(t) is filtered from

real-time measurement data, since ρ(θ̂, t) 6= ρ(θ0, t); robust control: so

ρ(θ̂, t) ≈ ρ(θ0, t).

Challenge: Feedback currently impossible for ultrafast dynamics.

Prospect: Robust control can exploit rich pulse shaping resources to minimize
sensitivity to parameter uncertainty. Electronic structure theory combined with
efficient parameter estimators based on time-resolved quantum measurement data can
reduce parameter uncertainty.



Estimation of quantum states and Hamiltonians

State estimation. Application: adaptive feedback (open loop) control of multiple
output processes. Probabilities of observations pk = Tr(ρ(θ)|k〉〈k|) are linear in
parameters

ρ ≡ ρ(θ) =
1

N
IN +

1

2

N2−1∑
j=1

θjλj ,

(θ1, ..., θN2−1) ≡ θ ∈ BN2−1 ⊂ RN2−1,

where λj are generators of SU(N).

Dynamical parameter estimation. Application: robust control; assessment of
worst case control performance for optimal control.

Challenge: Probabilities of observations are nonlinear in Hamiltonian parameters.
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Estimation of quantum Hamiltonians

Assume H0 known from resonant frequencies. Parameterization of µ for Rb:

µ(θ) =


0 θ1 θ2 0 0
θ1 0 0 θ3 0
θ2 0 0 θ4 0
0 θ3 θ4 0 θ5

0 0 0 θ5 0


For a constant field,

ρ(θ, tk ) = exp[−i(H0 − µ(θ)ε)tk ]ρ(0) exp[i(H0 − µ(θ)ε)tk ]

Unlike spectroscopic experiments used to obtain transition dipole elements for
Rb, can be generalized to molecules
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Asymptotically Efficient Parameter Estimators: MLE Theory

Likelihood function of parameters: L(θ̂|x) is joint density of observations x

expressed as function of unknown parameter vector θ̂.

Fisher information: I (θ) = −E
[
∂2 ln L(θ|x)
∂θ∂θ′

]
; [I (θ0)]−1 is called the Cramer-Rao

lower bound (CRB) for consistent estimators.

Maximum likelihood estimator

θ̂ML = arg max L(θ̂|x)

is asymptotically efficient estimator, achieves CRB
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MLE Results: State Estimation

Given measurement times (t1, · · · , tq); measure the energy through diagonal

observable H0 =
∑N

i=1 Ei |i〉〈i | at each time

The FI can be maximized prior to collecting experimental data, so that we collect
the most information possible about the state parameters from a given number of
measurements

Achieve by shaping control fields ε(t): max
ε(·)
||I (θ̂)||

Applying fields ε(t) that maximize Fisher information are found to improve the
quality of parameter estimates



Optimal State estimation, dynamic
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MLE of atomic Hamiltonian parameters

For Hamiltonian estimation, likelihood function for constant field ε is

ln L(θ|x) =
N+1∑
k=1

mk∑
j=1

ln pjk (θ)

=
N+1∑
k=1

mk∑
j=1

lnTr[ρ(θ, tk )Fij ]

ρ(θ, tk ) = exp[−i(H0 − µ(θ)ε)tk ]ρ(0) exp[i(H0 − µ(θ)ε)tk ]

where x denotes the data, mk is the number of observations made at time tk for
a time-independent Hamiltonian (constant control field ε(t)), and Fi = |i〉〈i | is
the outcome of the j − th observation.
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MLE of atomic Hamiltonian parameters (cont’d)

Covariance matrix of unknown dipole element parameters:

Σ = I−1(θ̂)

Due to nonlinearity of likelihood for Hamiltonian estimation, choice of optimal
measurement times important: choose the q measurement times or control the
unitary propagators by (robust) laser fields to maximize Fisher information:

max
(t1,··· ,tq )

||I (θ̂)|| or max
ε(·)
||I (θ̂)||

after an initial guess for θ is obtained from the first experiment or electronic
structure theory and where

pk (θ, ε(·)|Fr ) = Tr
{

U(ε(·), tk , θ)ρ(0)U†(ε(·), tk , θ)Fr

}
Adaptively update measurements given θ̂ = arg max L(θ̂|xi ), given measurement
outcomes xi from experiment i

Raj Chakrabarti Molecular Control Engineering: Prospects and Challenges



Bayesian Estimation of Hamiltonian parameters

The Hamiltonian identification problem is generally ill-posed - due to nonlinearity
of likelihood, there are multiple solutions. Thus µ(θ) is not identifiable by
frequentist inference

For nonlinear estimation, the parameter uncertainties returned by frequentist
methods require the choice of one out of the many θ̂’s that may maximize the
likelihood

An alternative is Bayesian Hamiltonian estimation, which is based on the notion
of a prior plausibility distribution on the space of parameters θ:

p (θ | x ∧ I ) dθ =
L (θ | x) p (θ | I ) dθ∫
Θ L (θ | x) p (θ | I ) dθ

,

Prospect: In addition to parametric model, have ab initio estimates for
parameters!

Bayesian Hamiltonian estimation can a) use electronic structure calculations

along with experimental data in constructing parameter estimates θ̂; b) render
problem identifiable
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Pareto Tradeoffs in Robust Control

Figure: Pareto frontier of solutions to mean-variance optimal control problems.

Pareto frontier of robust control solutions:

{ε̄(t) | J1(ε(t)) ≤ J1(ε̄(t)) ∨ J2(ε(t)) ≤ J2(ε̄(t)), ∀ε(t) 6= ε̄(t)}

E.g., J1(ε(t)) = E[J(ε(t)]], J2(ε(t)) = −std J(ε(t)) or J2(ε(t)) = Jwc (ε(t))

Importance/interpretation of user preferences: would one prefer lower expected
performance with more reliability?



Existence of analytical solutions: var J and Jwc , first order

A first-order approximation to the variance of population transfer fidelity due to
Hamiltonian parameter uncertainty can be found in closed form:

var J = Tr
[
Σ∇θJ(∇θJ)T

]
+O(||Σ||2),

where

[∇θJ]i = −iTr

{
[ρ0,Θ(T )]

∫ T

0
U†(t)X1ε(t)U(t) dt

}
and Xi is the Hermitian matrix obtained by setting θi = 1, θj = 0, j 6= i in µ(θ).



2nd order distributional results: E [J], parameter uncertainty

The leading term in the expansion for E [δJ] due to parameter uncertainty is of
2nd order:

E[δJ] = E[δθTH(θ, θ′)δθ] +O(||Σ||3)

= Tr
(
ΣH(θ, θ′)

)
+O(||Σ||3)

where H(θ, θ′) = d2J
dθdθ′ denotes the Hessian matrix with respect to Hamiltonian

parameters

Parameter uncertainty can improve E[J]; consider overlap:

Tr
(
ΣH(θ, θ′)

)
= Tr

(
V ΛV T W ΓW T

)
= Tr

(
ΛṼ ΓṼ T

)
where Λ ≥ 0, and Ṽ is an orthogonal matrix

How to search for fields where, given uncertainty spectrum, overlap with the
directions in parameter space associated with largest positive eigenvalues
maximized



Technology Development for Molecular Control Experiments

Currently preparing robust control fields for 5D3/2, 5D5/2 population
maximization

Application of ab initio Hamiltonian parameter estimates for control of Rb
electronic states and vibrational states in diatomics (LiRb)

Testing model-based robust control fields with line-by-line pulse shaper (with A.
Weiner)

Only expand model if control fidelity inadequate, due to steep scaling of
parameter space dimensionality



Frequency Comb Sources: Advances in Frequency, Intensity Stability of
Femtosecond Lasers and Optical Arbitrary Waveform Generation

Figure: Frequency combs coupled with line-by-line pulse shapers allow for Arbitrary Waveform
Generation (AWG) in femtosecond pulses. Left: A complex arbitrary waveform in the time domain.
Right: This waveform can be generated by setting the phases of each spectral line using a
line-by-line shaper. Unlike conventional pulse shaping, which shapes groups of spectral lines
together, AWG shapes the amplitudes and phases associated with each spectral line separately,
allowing the generation of arbitrary time-domain waveforms.

Generate arbitrary time-domain waveforms exploiting any number of quantum
interferences predicted by OCT

Extension to molecular OCT: LiRb dissociation - dipole Hamiltonian parameters
uncertain
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Scaling of Search Effort for AFC

(a) (b)

Optimal control calculations on CO, HCl: rotational, vibrational, and
rovibrational models.

Poorer scaling of AFC for MIMO problems involving higher rank, nondegenerate
ρ0 or O operators (e.g., rigid rotor at higher temperatures)

Reason:

Tr(ρ(T )O) = Tr(U(T )ρ0U†(T )O)

= Tr(U(T )V diag{λ1, · · · , λN} V †U†(T )W diag{γ1, · · · , γN} W †)

Thus control of nondegenerate ρ0, O requires control of more elements of the
unitary propagator



Dynamical Lie Algebra Depth: Effect on System Hamiltonian on AFC
Search Effort

(c) (d)

Figure: Left: Rank of the dynamical Lie algebra versus the number of µ operators appearing in the
Lie brackets for a 8-level diatomic rigid rotor model. Right: Rank of the dynamical Lie algebra
versus the number of µ operators appearing in the Lie brackets for a 8-level diatomic Morse
oscillator model.

Dynamical Lie Algebra Depth: For a controllable system, the smallest integer k
such that

span {[iHjk , · · · [iHj4 , [iHj3 , [iHj2 , iHj1 ]]]]} = u(N),

Hj ∈ {H0, µ}.



Few-Parameter Control of Atomic Rb (cont’d)

(a) (b)

Near degenerate level spacings decrease maximal control fidelity achievable by
few-parameter control schemes, necessitating optimal control methods

Multiphoton pathway interferences contribute to population transfer even for such
few-parameter schemes, but they cannot be properly controlled and exploited.
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Sensitivity to field noise

We have

E[δJ] ≈
∫ T

0
H(t, t′)E

[
δu(t)δu(t′)

]
dt dt′ =

∫ T

0
H(t, t′)acf(t, t′) dt dt′

Consider Hessian nullspace; H(t,t’) is finite rank kernel:

H(t, t′) = Tr
{
ρΘ(T )[µ(t), µ(t′)]+ −Θ(T )(µ(t)ρµ(t′) + µ(t′)ρµ(t))

}
which has rank 2N − 2, where N is Hilbert space dimension, for state-to-state
population transfer.

Prospect: Thus field noise at most frequencies does not affect population
transfer

To second order, laser noise can only decrease E[Jnom + δJ] since Hessian is
negative semidefinite

Raj Chakrabarti Molecular Control Engineering: Prospects and Challenges



Exploring robust control fields

Setting f (t) to the functional derivative of the appropriate auxiliary cost, and
choosing ε(0, t) = ε̄(t), one can then solve the constrained optimization problem
by iteratively solving for δε(s, t), with iterations indexed by algorithmic parameter
s.

To explore fields holding a constant high value of E[J] while reducing var J, solve

∂ε(s, t)

∂s
= f (s, t)−

a(s, t)∫ T
0 a2(s, t′) dt′

∫ T

0
f (s, t′)a(s, t′) dt′

a(s, t) =
δJ

δε(s, t)
+

δE[δJ]

δε(s, t)

f (s, t) =
δ var J

δε(t)

To maximize E[J] for given risk level (var J or Jwc ), switch the definitions of
a(s, t) and f (s, t)



Joint field/parameter-based robust control approaches

Prospect: Multiplicity of control solutions and flexible pulse shaping permits
formulation of Hamiltonian parameter uncertainty robustness criteria as
constraints

Since field uncertainty less severe, minimize var J or maximize E[J] due to field
pdf among fields obtained above

To explore fields holding a constant high value of Eθ[J] while reducing varε(t) J,
formulation is analogous to above
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Comparing robust and nonrobust quantum control mechanisms

(c) (d)

Figure: Left: Amplitudes of pathways contributing to the mechanism of a robust control field for
population transfer to 5D3/2 in atomic Rb. Right: Amplitudes of pathways for a comparatively
nonrobust field inducing the same transition.

Robust fields generally exploit fewer pathways, quantum interferences
For multilevel systems, multipathway interferences nonetheless required
Robustness of each pathway/interference to parameter uncertainty can be
computed
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