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Regulator/Servo Problems

Regulator problems: Maintain a desired trajectory (e.g., steady
state) in face of input, environmental disturbances or parameter
uncertainty

Servo problems: Reach a new steady state / setpoint, possibly at a
specified time.

Both can be achieved while minimizing some resource cost
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Time-varying/-invariant Problems

dxt
dt

= Axt + But ; assume observation law zt = Cxt
Time-invariant: use transfer functions

G(s) = C (sI − A)−1B

z(s) = G(s)u(s)

z(t) = L−1
[

C (sI − A)−1Bu(s)
]

G(s) is transfer function matrix: maps any input vector
u(s) = L[u(t)] in Laplace frequency domain to output (state) vector
x(s).
Assess stability in terms of poles of transfer function matrix elements
For linear systems, irrespective of how modes (eigenvectors) of A are
unstable, feedback control can stabilize (if system is observable and
controllable). Closed loop fundamental matrix Acl = A− BK (t);
Acl,ss = A− BK (∞) (K (t) is feedback controller gain) then has N
eigenvalues on left complex half plane.
Time-varying: cannot use transfer function theory.
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Linear/Bilinear/Nonlinear Problems

Time-varying, nonlinear systems common in servo problems

Linearization most common for regulator problems

Control theory for servo problems discussed extensively in other
optimal control talks

This talk will focus on estimation theory for servo/regulator
problems and control theory for regulator problems
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Deterministic/Stochastic Problems

Examples of dynamical models arising in engineering control:

Linear deterministic (ode) control system, parameter uncertainty:
dyt
dt

= Ayt + But , Aij ∼ N (aij , σ
2
ij), Bij ∼ N (bij , δ

2
ij)

Bilinear deterministic (ode) control system, parameter uncertainty:
dxt
dt

= (A+ But)xt , Aij ∼ N (aij , σ
2
ij), Bij ∼ N (bij , δ

2
ij)

Linear Markovian diffusion process control (Ornstein-Uhlenbeck
process): dyt = Aytdt + Butdt + Ddωt

Geometric Brownian motion (multiplicative noise):
dyt = aytdt + butytdt + cytdωt

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Intro
Parameter Estimation for Servo Problems
Regulator Problems: Feedforward Control

Filtering
Optimal Feedback

Classical Engineering Concepts
Quantum State and Parameter Estimation (Ensemble Systems)

Outline

1 Intro

2 Parameter Estimation for Servo Problems
Classical Engineering Concepts
Quantum State and Parameter Estimation (Ensemble Systems)

3 Regulator Problems: Feedforward Control
Classical Engineering Concepts
Quantum Feedforward

4 Filtering
Classical Engineering Concepts
Quantum Filtering

5 Optimal Feedback
Classical Engineering Concepts

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Intro
Parameter Estimation for Servo Problems
Regulator Problems: Feedforward Control

Filtering
Optimal Feedback

Classical Engineering Concepts
Quantum State and Parameter Estimation (Ensemble Systems)

Goals of parameter estimation

State estimation: adaptive feedback (open loop) control of multiple
output processes

Dynamical parameter estimation: robust, model predictive optimal
control

Assessment of worst case control performance
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Asymptotically Efficient Estimators

Likelihood function: L(θ̂|x) is joint density of observations expressed
as function of unknown parameter vector θ̂. Maximum likelihood
estimator θ̂ML = arg max L(θ̂|x) is best frequentist estimator,
achieves CRB

Fisher information: I (θ) = −E

[

∂2 ln L(θ|z)
∂θ∂θ′

]

; [I (θ0)]
−1 is called the

Cramer-Rao lower bound (CRB) for consistent estimators.

Asymptotically efficient. A sequence of consistent estimators θ̂m is

asymptotically efficient if
√
m [θ̂m − θ0]

d→ N [0,mI−1(θ0)]

Equivalence with and limitations of least squares estimation:
equivalent for Gaussian noise. Least squares computationally
efficient but can be inaccurate for non-Gaussian noise
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Observability of time-variant linear systems

Consider the time-variant linear system dx
dt

= A(t)x(t) in the
absence of control, with formal solution x(t) = U(t)x0
Consider a linear observer z(t) = C (t)x(t) = C (t)U(t)x0, where
C (t) is m × N

The aim is to solve for x0 by making m observations z(t) at each
time t

To obtain a sufficient condition for this solution to exist, left-multiply
the observation equation by UT (t)CT (t) and integrate over all time:

∫ T

0

UT (t)CT (t)C (t)U(t) dt x0 =

∫ T

0

UT (t)CT (t)z(t) dt

Let H(T ) =
∫ T

0
UT (t)CT (t)C (t)U(t) dt; note it is an N × N

Gramian matrix. Now solve for x0:

x0 = H−1(T )

∫ T

0

UT (t)CT (t)z(t) dt

H is called the observability Gramian matrix.

Relation to discrete-time recursive least squares estimation
(regression) of single state



Dynamical parameter estimation (system identification)

Method: (linear) regression/step testing for n-th order (vector)
autoregressive processes (discrete-time version of n-th order linear
ode/sde):

yk = a1yk−1 + a2yk−2 + · · ·+ b1uk−1 + b2uk−2 + · · ·+ ǫk

For step inputs uk , unique solution for a, b’s exists (via left
pseudoinverse), if matrix CTC is full rank, where C is m ×N matrix
of regression factors (columns are [yk1−1, · · · , ykm−1]

T , etc); requires
measurements can be made on timescale where discrete-time
approximation valid

State estimates yk (“observations”) and associated noise ǫk can be
obtained from MLE/LQ (filters for time-series observations)

Most useful for time-series observations/estimates of state

System parameters are extracted using state estimates or direct
observations of state

For independent observations, inversion of dynamical trajectory
using evolution times tk as regression factors, or a dynamical
equation that is nonlinear in parameters, results in ill-posed problem
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Quantum state estimation, static

Tomography or Method of Moments estimation:

Tr(ρ(θ̂)Oi ) = di , 1 ≤ i ≤ N2 − 1, (1)

where di denotes the sample mean of the observable quantity
corresponding to measurement of Oi . Introducing the notation

Cij =
∂Tr(ρ(θ)Oi )

∂θj
, we may solve for the estimated parameter vector as

θ̂ = C−1d.

Not asymptotically efficient: does not reach Cramer-Rao bound for
non-Gaussian pdfs. Use MLE instead w likelihood function

L (θ | X ) =

m
∏

k=1

Tr(ρ(θ)Fik ), (2)

Can use more moments (e.g., variances of observation data) to
improve estimates
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Optimal State estimation, static

MLE-based quantum state estimation: two diagonal elements of ρ
Predictions of asymptotic theory are precise in finite samples

Panel A
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Figure: Finite sample distributions of
√

m(ρii(θ̂)− ρii(θ0)), for mixed three-level
state, MUB bases. Panels A-C, ρ11. (A) m = 100; (B) m = 400; (C)
m = 1000. Panels D-F, ρ22. (D) m = 100; (E) m = 400; (F) m = 1000. In
each panel, finite sample distributions (1000 simulations) are shown alongside
the corresponding asymptotic distribution.
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Observability: state estimation, dynamic

Now let Tr(ρ′(θ̂)U†(t)O ′
iU(t)) = zi (t), 1 ≤ i ≤ m, and

CT (t) = [ν (O1(t)) , · · · , ν (Om(t))]

∫ T

0

CT (t)C (t)dt ν(ρ(θ̂)) =

∫ T

0

CT (t)z(t) dt

θ̂ =

[

∫ T

0

CT (t)C (t) dt

]−1
∫ T

0

CT (t)z(t) dt,

(3)

Note inversion (MME) does not enforce positive-semidefiniteness
constraints

New aspect of quantum measurement: noncommutative
observations; each associated with a POVM (resolution of identity)

〈I (θ̂)〉 = 1

V0

∫

B
N2

−1

I (θ̂, ρ(θ0))dρ(θ0), (4)

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control
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Assume projective measurements in POVM

Fr(N−1)+i = V (r)F̃i (V
(r))†,

F̃i = |i〉〈i | = diag(0, ..., 1, ...0),

1 ≤ i ≤ N − 1, 1 ≤ r ≤ N + 1.

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Optimal Observability: state estimation, dynamic

Bilinear observability: O ′
i = Oi − TrOi

N
IN ;

n
⊕
i=1

span{[· · · [iHj3 , [iHj2 , [iHj1 , iO
′
i ]]] · · · ]} = su(N)

Hj ∈ {H0, µ}
Does not leverage properties of quantum measurement

Definition

A quantum system {H0, µ} with observable operators {Oi} is said to be
optimally observable if there exists a sequence of controls {εk(·)} and
associated measurement times tk such that

sup
{Oi,εk (·)

(tk )}
〈||I (ρ0(θ̂))||〉/m = sup

{Fi}
〈||I (ρ0(θ̂))||〉/m, where m denotes the

number of measurements, || · || denotes the matrix norm, Fi are the
elements of any informationally complete POVM set, and the averaging
is in the sense of equation (4).
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Optimal observability: state estimation, dynamic

Formulate optimal measurement basis control problem:

F (Uk (T )) = ||V (k) − Uk(T )||2

= Tr[(V (k) − Uk(T ))†(V (k) − Uk(T ))]

= 2N − 2ℜTr((V (k))†Uk(T )), (5)

V (r)
pq =















δpq, r = 0

1√
N
exp[ 2πi

N
(rp2 + pq)], 1 ≤ r ≤ N .

(6)

Density matrix controllability is sufficient (any unitary in coset SU(N)
TN−1

informationally equivalent).

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Optimal Observability: state estimation, dynamic
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Figure: Optimal fields and power spectra (black, solid) for driving a 3-level
system to MUB measurement bases. Noisy fields and spectra are superimposed
(red, dashed). a) Field for basis V (1); b) Field for basis V (2). The Frobenius
distance between controlled and target bases is < 0.03 for both optimal fields
in the absence of noise.
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State estimation, dynamic
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Figure: Distributions of
√

m(θ̂i − θi,0) for a three-level system, sample size
1000: comparison of perfect and noisy controls. (A)

√

m(θ̂7 − θ7,0); (B)
√

m(θ̂8 − θ8,0). Panels C and D: Asymptotic distributions obtained for A and
B, respectively, are isolated for clarity.
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Hamiltonian parameter estimation

Issues with measurement of ultrafast dynamics - regression based on
ode difficult; nonlinear inversion or MLE required (avoided by
time-series filtering)

Use i) the observations or ii) the sample means of observations as
measurement data

i) maximize likelihood of parameters given noisy observations:

L(~h|x) =
m
∏

k=1

Tr(ρt(~h)Fik )

ii) solve for parameters by MME (nonlinear) inversion

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control
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Hamiltonian parameter estimation

ii) can be formulated with sample means of “observations” being
point estimates of the state ρt parameters; nonlinear MME problem
following ML estimation of states. Moments: θ̂i(~h, t) = ci(t)

Advantages of each formulation: ML w i) is asymptotically efficient
from perspective of classical probability theory, not optimal within
quantum probability theory (but LQ is not, due to non-Gaussian
measurement noise and nonlinearity); ii) is not asymptotically
efficient classically but can leverage theory of state estimation

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Future directions (what should be done): parameter
estimation

Exploit features of noncommutative measurements in Hamiltonian
parameter estimation? Choose control inputs ε(t) - asymptotically
efficient within quantum inference - based on mutually unbiased
measurement bases

Use ML based on L(~h|x) in stage 1, choose optimal measurement

times and control inputs in stage 2 refinement based on ~h estimate,
reestimate using new L(~h|x)
How to exploit analytical objective priors (new to quantum)
originating due to known geometry of state space in Bayesian
estimation? These correspond to the volume (Bures) measure on
the space of density matrices

Exploit results from ab initio Hamiltonian parameter calculations to
formulate priors for Hamiltonian estimation and apply Bayesian
estimation

Applications to robust model-predictive optimal control
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Selected References

Linear observability: Kalman

Bilinear observability: D. DAlessandro 2003,2004,2006

Hamiltonian parameter estimation: Young/Kosut/Whaley (MLE);
H. Rabitz et al., others

Asymptotically optimal measurements (quantum FI): Wootters,
Caves, Barndorff-Nielsen

Optimal observability: Chakrabarti/Ghosh 2011
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Neighboring optimal control

Engineering concept: noise (environmental, input, measurement) or
parameter uncertainty can compromise optimal control strategies;
correct during evolution by local linearization and real-time feedback
or feedforward (computationally less expensive)

Linearize nonlinear system around the reference trajectory
(xr (t), ur (t)) (assume it is known from solution to servo problem):

A(t) =
∂F

∂x
[xr (t), ur (t), t],

B(t) =
∂F

∂u
[xr (t), ur (t), t]

They can be used in integration of the corresponding Riccati
equations

Define deviation variables
∆x(t) = xr (t)− x(t), ∆u(t) = ur (t)− u(t)

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Local controllability (cont’d)

Local controllability: whether there exists a control perturbation
∆u(t) that can achieve any arbitrary small perturbation from a
nominal (reference) trajectory
A sufficient condition for local controllability is that the N × N
controllability Gramian matrix

G(T ) =

∫ T

0

U(T , t ′)B(t ′)BT (t ′)UT (T , t ′) dt ′

is nonsingular
This follows because the control perturbation ∆u(t) necessary to
induce a change dx(T ) is

∆u(t) = BT (t)UT (T , t)G−1(u,T )dx(T ). (7)

Cost functional for perturbative feedback:

F (∆x(T )) +
1

2

∫ T

0

∆xT (t)Q∆x(t) + ∆uT (t)R∆u(t) dt.

Use of this Bolza functional will result in state-dependent feedback
form of neighboring optimal feedback control ∆u(x(t), t) that can
compensate for noise/uncertainty above; stabilization (pole
placement) can be achieved
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Feedforward Control: classical input noise

Motivation - minimize need for feedback
Direct synthesis (“perfect control”) for time-invariant systems:
Algebraically solve for feedforward controller transfer function Gf (s)
(input-output map Gf (s) = u(s)/d(s), where d(s) is Laplace
transform of noisy input)

Gf = − Gd

GmGvGp

where Gd is the transfer function for the disturbance input ( x(s)
d(s) ),

Gm is the transfer function of the measurement device, Gv is that of
the actuator and Gp is that of the process dynamics
Assume source of uncertainty is noise in input parameters, but
environmental noise, measurement noise and dynamical parameter
uncertainties are minimal
Direct synthesis does not work for time-varying systems (e.g.,
bilinear quantum systems)
Sensor/actuator time delays can render perfect control impossible
and complicate algebraic direct synthesisRaj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Intro
Parameter Estimation for Servo Problems
Regulator Problems: Feedforward Control

Filtering
Optimal Feedback

Classical Engineering Concepts
Quantum Feedforward

Neighboring Optimal Quantum Feedforward Control:
classical input noise

Consider effects of classical control field input noise on optimal
control fidelity

Bilinear time-varying systems: since direct synthesis not possible,
apply neighboring optimal control, using Lagrange functional (rather
than Bolza, since state-dependent feedback not required,
stabilization is not goal, and quality of control fidelity is improved)

First assess local controllability

Optimal corrective control perturbation (minimizes fluence of δε(t)):

δε(t) = νT [µ(t)]

[

∫ T

0

ν[µ(t)]νT [µ(t)]dt

]−1

ν[dA(T )] (8)

where dA(T ) = −U†(T )δU(0)

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control



Neighboring Optimal Feedforward Control: classical input
noise

Local controllability Gramian should be full for local controllability (must
be expressed in appropriate minimal parameterization of tangent space
for predicted feedforward update to remain on quantum state manifold):

S : su(N) → su(N)

S(ε, [ti , ti+1]) =

∫ ti+1

ti

[

ν
(

U†(t, ti )µU(t, ti )
)] [

ν
(

U†(t, ti )µU(t, ti )
)]T

dt

Expressions on SH,CPN−1, SU(N), SU(N)/TN−1 etc have been
developed

Feedforward steps:

1 Compute the optimal controls ε(t) offline

2 On each time interval [ti , ti+1], compute the Gramian above (offline,
prior to the experiment).

3 Measure input disturbances δε(t) over the interval [ti−1, ti −∆t].
∆t denotes the sensor+actuator time delay in the feedforward loop.



Neighboring Optimal Feedforward Control: classical input
noise

Apply the linear map δε(t) → δŨ(ti , ti−1), t ∈ [ti−1, ti ] (where
Ũ(ti ) is used to denote the forecast due to the presence of
unmeasured disturbances/model misspecification) to obtain a
prediction for the effect of measured input disturbances on the
dynamical propagator at any given time ti .

Apply neighboring optimal feedforward law

δε(t) =
[

ν
(

U†(t, ti )µU(t, ti )
)]T

S−1(ε, [ti , ti+1])ν (dA(ti+1, ti))
(9)

on [ti , ti+1], where the choice
dA(ti+1, ti ) = −Ũ†(ti , ti−1)δŨ(ti , ti−1) is made.

The functions of time [U†(t, ti )µU(t, ti )]jk are linearly combined to
create δε(t): avoid LCM time delays by preloading into pulse shapers

Or, implement using (electro-optic) pulse shapers with nanosecond
response times



Feedforward Control: quantum input noise

Coherent Feedforward: design a passive controller (that both
measures input disturbances and cancels undesired noise)

Applied to cavity optomechanical systems

Operator equations of motion are linearized by neglecting quadratic
terms producing a time-invariant control system

Feedforward design goal: cancel effects of phase fluctuations in input
field on the outputs by design of the transfer function. Achieved
through passive device (with transfer function Gf (s) that rotates
input quadratures through s-dependent angle)

Obtain transfer function representation y(s) = G(s)u(s)

Feedforward design goal: cancel effects of phase fluctuations in input
field on the outputs by design of the transfer function.

Caves formulated block diagrams for linear time-invariant systems
from quantum optics; James considered series products as well as
diagrams for nonlinear quantum optical control systems
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Future Challenges (what should be done)

Optimal feedforward for open quantum systems (ensemble)

Application to robust controls

Analysis of approximation accuracy for physical systems based on
Magnus expansion

Local controllability Gramian determines search effort for adaptive
feedback control optimization - connection to quantum control
landscapes and singular controls; observable and pure state control
systems are more likely to have well-conditioned Gramians than
mixed state or gate control systems

Raj Chakrabarti Engineering Control Concepts and Their Application to Quantum Control
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Selected References

Coherent quantum feedforward (time-invariant; quantum noise
cancellation): Caves, Kimble

Feedforward/feedback block diagrams in quantum optics: James,
Gough, Nurdin

Singular controls in quantum control landscapes: R-B. Wu, J.
Dominy, H. Rabitz, Schirmer, Tannor

Optimal coherent feedforward control (classical input noise):
Chakrabarti
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Filtering: optimal state estimation of dynamical systems

Goals: for systems with slower dynamics and short time delays,
regulate optimal trajectory against dynamical noise or parameter
uncertainty; cannot be applied to systems with ultrafast dynamics.
Since the state covariance of a stochastic dynamical system
increases with time of evolution, open loop “optimal” control based
on state estimate forecast x̂(t) is prone to error
Filtering methods update the state estimate and its covariance
matrix optimally based on additional measurements made during
evolution; based on combination of i) state estimate / covariance
matrix updates in presence of measurements, but absence of
evolution; ii) state estimate / covariance matrix updates in presence
of evolution, but absence of measurements
Filters convert information set (filtration)
I (t0, t) = (z(t0, t)), u(t0, t)) into derived information set
ID(t0, t) = (x̂(t0, t),Σ(t0, t)). We will restrict attention to
Markovian diffusion processes; example: multivariate
Ornstein-Uhlenbeck process dx(t) = Ax(t) dt + D dω(t)
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Kalman Filtering: Linear Gaussian systems

Filters can be based on different estimators for the state and its
covariance; the simplest is the least squares filter
Kalman developed optimal least squares filter for linear dynamical
systems
Recall, for linear systems in the Heisenberg picture,
∫ T

0

CT (t)C (t)dt x̂(0) =

∫ T

0

CT (t)z(t) dt

x̂(0) =

[

∫ T

0

CT (t)C (t) dt

]−1
∫ T

0

CT (t)z(t) dt,

(10)

where x = x0, i.e., the state was considered stationary and there
were only new measurements/observation laws at each time
Now include dynamical evolution of system; first equation above
must be converted to differential equation; combine differential
equations due to state evolution and measurements
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Kalman filter equations

Formulate dynamics of measurement in continuous time:
dz(t) = C (t)x(t)dt + Edω(t)

Then the Kalman filter equations for optimal updating of the state
estimate and its error during dynamical evolution of a linear system
are (recall C specifies drift in observation law):

dx̂(t) = Ax̂(t)dt +Σ(t)CT (t)[dz(t)− C (t)x̂(t)dt]; x̂(0) = x̂0

dΣ(t)

dt
= AΣ(t) + Σ(t)AT + DDT−

Σ(t)CT (t)C (t)Σ(t); Σ(0) = Σ0

latter is called a Riccati equation; together equivalent to a
“stochastic Fokker-Planck equation”.

Kalman filter minimizes state estimate covariance by optimally
mixing old and new measurements

Features shared by all (frequentist) filters for Markovian sp’s: a) sde
for state estimate update composed of a drift term due to evolution
alone and a martingale difference due to new information entering at
time t; b) covariance update is a nonlinear ode
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Quantum measurement

H⊗F (latter is Fock space of coupled field) representation of
measurement

ρ̂0, φ initial states on H,F , respectively

Consider commuting set of projection operators Fz on F , associated
with a given measurement basis

Tr[Ut(ρ̂0 ⊗ φ)U†
t (I ⊗ Fz )] = Tr[(ρ̂0 ⊗ φ)U†

t (I ⊗ Fz)Ut ] specifies the
probability distribution p(zt) of scalar measurement outcomes in
that measurement basis at time ti , following from measurement law
z(ti ) = C (ti )x̂ + w(ti ) (ŷ is the initial state; w(t) is realization of
measurement noise random variable corresponding to outcome z)
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Continuous quantum measurement

Formulate measurements in continuous time by analogy to classical
continuous measurement: need to formulate a sde for outcomes Fz

of measurements of field

Stochastic observation law provides posterior pdf of any observable
quantity; let output operator be denoted by Yt = U†

t (I ⊗W )Ut

where W is a given observable on F ; compare z(t) above; dY (t)
operator sde analogous to scalar dz(t) will follow from sde for Ut ,
which will also introduce noise

Homodyne measurement: measures Wiener diffusion process on F :
then field observable Wt = At + A†

t
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Stochastic Schrödinger Equations

Now obtain the measurement sdes by specifying stochastic dynamics

Equation of motion for Ut is stochastic differential equation on
H⊗F
Markovian SSE:

dUt =

[

(−iH − 1

2
L†L) dt + LdA†

t − L†dAt

]

Ut

The first term is the drift; Lindblad operators on H specify
system-environment coupling of ρ, φ

Second term is diffusion, includes non-Hermitian “quantum noise”
increment random variables dA, dA†

Compare Geometric Brownian motion (linear sde with multiplicative
noise)
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Stochastic Schrödinger Equations

Observation stochastic differential equation (observe W on F):

Yt = U†
t [(I ⊗W )]Ut

dYt = (L+ L†) dt + dWt

The first term provides the deterministic component to the
observation law (analogous to C dt in classical law
dz(t) = Cx(t)dt + Ddω(t); Cx comes from inner product with ρt)
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Quantum Filtering: Stochastic Master Equation

Now add new measurements to free dynamics: obtain stochastic
master equation for ρ̂t (equivalently, any complete set of observable
operators Xi ):

d ρ̂t = L(ρ̂t) dt + σ(ρ̂t )
[

dYt − 〈ρ̂t , L+ L†〉 dt
]

Accompanying deterministic (master) equation for covariance matrix
of these operators is always nonlinear in state; obtained from σ(ρ̂t)
(compare Σ(t)CT (t) in classical filter)
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Stochastic optimal control objectives

For stochastic dynamics, can no longer aim to drive the system to a
precise final state
Goal: to control moments of a cost functional (cost-to-go): e.g. its
expectation:

min
u(t)

E

[

F (x(T )) +
1

2

∫ T

t

xT (t)Q(t)x(t) + uT (t)R(t)u(t) dt

]

This quadratic cost (Bolza functional) can be rewritten in terms
quadratic in the mean x̂(t) and the covariance matrix Σ(t) of state
estimates
Optimal control must always be expressed in feedback form
ū(x̂(t), t)
Dynamical constraint for LQG controller is (sde)

dx̂(t) = Ax̂(t)dt + Bu(t)dt + Ke(t)(dz(t) − C (t)x̂(t)dt);

control problem is min
u(t)

JCE subject to this constraint

The feedback controller Riccati equation is (propagated backward in
time from S(T )):

dS(t)

dt
= −ATS − SA− Q + S(t)BKc(t)



Quantum Feedback: Hamilton-Jacobi-Bellman Equation

Operator-valued (new to quantum) optimal control cost functional:

J(u(·)) =
∫ T

0

U†
t (u(·))C (u(t))Ut (u(·)) dt + U†

T (u(·))DUT (u(·))

where C (u) denotes any operator-valued function of u (e.g., X (u))
and Ut(u) denotes the controlled evolution operator. Ct is an
(operator-valued) diffusion process. This is expressed in Heisenberg
picture.

“Cost-to-go” on [t,T ]: J(ρ, u, t) obtained by replacing integral over
[0,T ] with integral over [t,T ]; note no state in above equation

Expectation/moments of associated scalar quantities must be
computed in Schrödinger picture by inner product with ρ̂t , the
posterior expected density operator conditioned on measurements on
[0, t]:

E t
0 [J(ρ, u, t)] = E

[

∫ T

t

〈ρ̂t(u), (C (u))〉 dt + 〈ρ̂T (u), (D)〉
]
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Future Challenges: Stochastic Control

Neighboring optimal LQG q control

Controller tuning through choice of weighting matrices in operator
C (u)

Dynamical parameter estimation: jointly estimate states, parameters
by either i) AKF - can be used within robust, model-predictive
control formulation; ii) formulation of likelihood function

L(~h|x1, · · · , xm) =
∏m

i=1 p(xi+1|xi ,~h), using Kalman state estimates
for x2, · · · , xm and the conditional probabilities are obtained from
the SHE

Analytical solutions to HJB equation in other canonical cases
beyond LQG - possibly including control of covariance matrix; curse
of dimensionality

How to choose optimal measurements for time-series state
estimation
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