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Preface

With interest mounting across academic departments in the engineering of quan-
tum systems and the design of quantum information processing devices, the need
has arisen to delineate the fundamental principles of quantum engineering in a clear
and accessible fashion. At the heart of this subject is the theory of quantum esti-
mation and control namely, how to optimally steer a quantum dynamical system
to a desired objective, making the best possible use of the information obtained
from observations of that system at intermediate times. Until recently, it has been
difficult to find an integrated treatment of these topics in one source, partly due to
the rapidly changing nature of the fields. The subject is now sufficiently mature to
warrant a text/reference book that extends the classical treatment of both estima-
tion and control to the quantum domain. This book aims to provide a self-contained
survey of these topics for use by graduate students and researchers in quantum en-
gineering and quantum information sciences. Due to the interdisciplinary nature
of these disciplines, the books audience may be comprised of readers with formal
training in a wide variety of fields, including quantum chemistry, physics, electrical
or mechanical engineering, applied mathematics, or computer science. The only es-
sential prerequisite is an introductory course in quantum mechanics at the first-year
graduate level, as typically taught in physics departments. One of our primary goals
is to give the student with limited background in control theory, but a familiarity
with quantum dynamical systems, the tools to engineer those systems and the nec-
essary preparation to engage the research literature. A second objective is to offer a
convenient reference for active and experienced researchers in quantum engineering
and quantum information theory. Along the way, we will endeavor to show that
quantum control and estimation penetrate directly to the heart of quantum physics
and shed light on some longstanding controversies surrounding the subject through
a pragmatic approach to observation and regulation.

Optimal control theory can be subdivided into the related subjects of open
loop and closed loop control. The former deals with the identification of control laws
based solely on knowledge of the dynamical equations of motion and the systems
initial conditions, while the latter additionally employs real-time measurements and
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feedback in order to correct for the effects of noise and uncertainty and to update
the control law. In many experimental incarnations of quantum control such as the
original applications to the femtosecond laser control of molecular dynamics real-
time feedback is not possible (or necessary) due to the short characteristic time scale
of the dynamics. The salient feature of open loop control is that it does not require
state estimation.

Part I is dedicated to open loop quantum optimal control. Our treatment of
open loop control is based on geometric control theory, which uses the principles of
group theory to

assess system controllability and derive optimal control laws. Geometric con-
trol theory is particularly powerful in quantum mechanics due to the linearity of
quantum dynamics and the existence of manifold quantum symmetries. General
theorems on open loop quantum control are easiest to prove from the geometric
standpoint. By contrast, in most textbooks on classical open loop control, geomet-
ric control theory is de-emphasized. In a point of departure from previous texts,
we show how the properties of quantum optimal control landscapes that have ren-
dered open loop control remarkably successful -even for highly complex systems -can
be rendered transparent through geometric control. Quantum open loop learning
control, wherein control fields are iteratively updated in the laboratory to identify
optimal solutions, is also covered in Part I.

In certain certain classes of quantum control problems, real-time feedback can
improve fidelity. For example, in quantum computation, real-time error correction
may help to stabilize information processing channels in the presence of environ-
mental noise and decoherence. In cases where the time delay between measurement
and application of feedback is much smaller than the dynamical time scale of the
system, closed loop quantum feedback can be implemented. As of the time of this
writing, there are no textbooks available on this important subject of closed loop
quantum control. The principles of quantum optimal control introduced in Part I
are extended to the derivation of closed loop control laws in Part II.

Closed loop control has been extensively studied in the context of classical
systems, and the textbooks by Bryson Ho, or Stengel, may be familiar to many
readers with backgrounds in engineering. It is thus important to provide a summary
of the major differences between classical and quantum closed loop control. First,
the state of a quantum dynamical system can never be precisely known on the basis
of a finite number of measurements, even in the absence of measurement error or
noise in the system. By contrast, in nonstatistical classical mechanics, the state
vector can in principle be precisely determined. Second, measurement of the state
of a quantum system generally disturbs the state, resulting in stochastic collapse
of the state vector into an eigenstate of the corresponding observable. Even in the
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presence of weak, continuous (as opposed to projective) measurement, which does
not necessarily result in collapse into an eigenstate, the measurement results in the
introduction of a stochastic driving term into the dynamical equations governing
the systems evolution.

As a result of these two features, there are two fundamentally different types of
regulators or feedback controllers in quantum control classical feedback controllers
and coherent (or quantum) feedback controllers. Closed loop quantum control in-
volving measurements is referred to as quantum control via classical feedback. Such
control is always stochastic in quantum mechanics, although it may be determinis-
tic in classical mechanics. By contrast, coherent controllers exploit coherent sensing
i.e., transfer of information in the quantum state of the controlled system through
entanglement with the controller, which is itself a quantum system. Coherent feed-
back controllers are the quantum analog of the classical flyball governor in Watts
steam engine. This form of closed loop control, where the controller is a second
dynamical system and does not require measurements, is often referred to as self-
regulation in the control/systems

engineering literature. In essence, the quantum controller assimilates informa-
tion on the state of the system through entanglement, rather than classical mea-
surement, and is designed to react accordingly. The coherent controller functions as
a quantum computer that monitors the state of the target system and processes it,
prior to feeding back optimal controls.

Coherent feedback controllers are somewhat more difficult to design experi-
mentally, because all information regarding the feedback control law must be pre-
programmed into the design of the controller (or regulator), and because the con-
troller must be directly interfaced with the target system. However, learning control
methods can be used to facilitate design, and the lack of measurement-induced dis-
turbance renders such controllers more suitable for noise-sensitive applications like
quantum computation. We therefore examine both coherent and classical feedback
controllers in this book.

Given that statistical estimation of the state is required for closed loop control
with classical feedback, Part II begins with a self-contained treatment of quantum
estimation theory, prior to integrating estimation with control. In order to under-
stand quantum estimation theory, we must be cognizant of a third difference between
classical and quantum systems namely, that quantum probability theory is based on
noncommutative probability spaces. For example, this means that quantum noise
(stochastic processes) must be defined in terms of a noncommutative generaliza-
tion of the Ito stochastic calculus. There are now several classic texts available on
quantum probability and quantum statistical inference, which cover the essential
differences with classical probability, noise and estimation. The treatments in these



vi CONTENTS

books focus on the formal (asymptotic) properties of the estimators or stochastic
processes themselves, but do not cover either practical algorithms for state estima-
tion or filtering theory, which are essential for stochastic optimal control. Here, we
address both topics. The necessary background on classical probability theory as
well as classical filtering is provided.

As in the classical setting, quantum estimation theory can be approached from
two standpoints: frequentist or Bayesian statistics. Bayesian estimation is consid-
erably more general than frequentist estimation, and is rigorous for finite sample
sizes. Good finite sample size performance is especially important in quantum esti-
mation problems, because of the inevitable disturbances caused by measurements.
Moreover, in filtering problems, where both state variables and dynamical param-
eters must be estimated, Bayesian methods permit estimates for both -including
confidence intervals to be obtained simultaneously, since all information about the
system is contained within the posterior plausibility distribution. The Bayesian
approach has been adopted in the formal quantum statistical inference literature,
due to its rigorous theoretical consistency with the axioms of quantum mechanics,
but has thus far been underrepresented in the quantum engineering literature. In
this book we adopt the Bayesian framework as the foundation for the treatment of
estimation, with the aim of demonstrating that it is the preferred method for both
stationary and continuous time statistical inference.

Given the emphasis on controlling real quantum systems in the presence of
noise and incomplete information, the approach adopted in this book synthesizes
features of pure

mathematics and applied/engineering mathematics. This philosophy extends
to the example problems that illustrate the principles introduced in each section.
Nearly all problems of practical importance in quantum control especially stochas-
tic control -do not admit analytical solution and must be solved numerically. The
application of computers to filtering and control problems has a distinguished his-
tory of success in classical control theory. Quantum control is no exception. In
contrast to most books on quantum mechanics, therefore, some of the examples and
problems in this book include the option of combining analytical problem formula-
tion with numerical solution. Two separate chapters are dedicated to describing the
theoretical underpinnings of the numerical methods employed.

These simulations may be carried out using either reader-developed code or a
library of publicly available quantum control and estimation programs [note: slated
for development; details TBD] under the name of The Quantum Scientific Library
(QSL). The QSL project aims to provide an integrated suite of control and estima-
tion codes to quantum engineers, given the aforementioned fundamentally different
properties of quantum/classical estimation and control. The QSL estimation rou-
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tines contain both frequentist and Bayesian algorithms (the latter based on efficient
Markov Chain Monte Carlo (MCMC) techniques). QSL optimal control algorithms
include stochastic (genetic and evolutionary) algorithms for open-loop control of
open and closed quantum systems, as well as gradient-based algorithms for search-
ing control landscapes. Hybrid stochastic(simulated annealing)/deterministic algo-
rithms are also included for overcoming control landscape traps. The QSL will be
open source, with freely available online documentation.

The book is organized as follows. The preliminary chapter (0) reviews ba-
sic concepts of quantum dynamics. This is meant to be a refresher of concepts
covered in a first-year graduate quantum physics course. Part I of the book deals
with open-loop optimal control theory -optimal control without feedback based on
measurement of the state. In Chapter 1, the basic definitions of control systems are
presented. This includes the classification of system dynamics and the establishment
of the bilinearity of quantum control systems, definitions of the various types of con-
trollability, and powerful controllability theorems that apply to quantum systems.
Necessary background on Lie groups and Lie algebras can be found in the Ap-
pendix. In Chapter 2, the basics of quantum optimal control theory are presented,
including the Euler-Lagrange equations of Pontryagins maximum principle, from
which open loop control laws follow. Analytical solutions are presented for selected
low-dimensional control systems with various types of costs. Chapter 3 categorizes
generic properties of the solution sets of quantum optimal control problems: regular
and singular extremals and features of control landscapes that affect the efficiency
of the search for optimal controls. In Chapter 4, we present numerical algorithms
for open loop quantum optimal control, including stochastic and gradient-based de-
terministic techniques. Chapter 5 surveys some of the most important applications
of open loop quantum optimal control, namely control of the expectation values of
quantum observables for state preparation or chemical reaction control, as well as
control of quantum gates for quantum computing.

Part II, quantum estimation theory and stochastic control, begins with Chap-
ter 7, an overview of quantum probability theory and its differences with respect
to classical probability theory, emphasizing the advantages of Bayesian techniques
in quantum statistical inference. The necessary background in classical probability
theory is reviewed in the Appendix. Chapter 8 examines the stochastic processes
that are the subject of stochastic quantum control. In Chapter 9, the various forms
of quantum measurement, and their stochastic effects on the quantum state -an
important difference with respect to classical stochastic control -are described. In
Chapter 10, quantum filtering and forecasting theory, which are essential for the
control of stochastic systems, are covered. The relationship between the system-
theoretic notion of observability namely, the ability to completely specify the state
through sequential measurements -and controllability is established. Then, both fre-



viii CONTENTS

quentist (Kalman) filtering and Bayesian filtering of quantum states are considered
in turn. In Chapter 11, the two primary variants of closed loop quantum control
coherent and classical feedback are discussed. Section

11.1 on deterministic (coherent) feedback control is based primary on the re-
sults from Chapters 1 and 2 on OCT, and does not require a thorough reading of
Chapters 7-9. Section 11.2 on quantum control via classical feedback combines the
dynamic programming results from 11.1 with the filtering theory covered in Chap-
ter 10, in order to develop the quantum stochastic feedback control theory. Finally,
Chapter 12 presents numerical methods for (frequentist and Bayesian) quantum
filtering as well as dynamic programming, with accompanying examples that can
be run using the QSL. This book grew out of an extensive review article on open
loop quantum optimal control written by the authors for International Reviews in
Physical Chemistry in 2007. Chapters 3 and 4, especially, are based heavily on that
work.

Raj Chakrabarti, Herschel Rabitz

Princeton,

New Jersey



Chapter 1

Introduction

For many decades, physicists and chemists have employed various spectroscopic
methods to carefully observe quantum systems on the atomic and molecular scale.
The fascinating feature of quantum control is the ability to not just observe but
actively manipulate the course of physical and chemical processes, thereby provid-
ing hitherto unattainable means to explore quantum dynamics. This remarkable
capability along with a multitude of possible practical applications have attracted
enormous attention to the field of control over quantum phenomena. This area of
research has experienced extensive development during the last two decades and
continues to grow rapidly. A notable feature of this development is the fruitful
interplay between theoretical and experimental advances.

Various theoretical and experimental aspects of quantum control have been
reviewed in a number of articles and books [1, 2, ?, 97, 98, ?, 3, 61, ?, 82, 5, 99, 4,
130, 133, 83, 139, 12, 13, ?, 6, 134, 141, 62, 135, 8, 7, 136, 137, 14, 138, 15, 16, 17,
18, 10, 9, 131, 147, 11, 19, 20, 21, 22, 23]. This paper starts with a short review of
historical developments as a basis for evaluating the current status of the field and
forecasting future directions of research. We try to identify important trends, follow
their evolution from the past through the present, and cautiously project them into
the future. This paper is not intended to be a complete review of quantum control,
but rather a perspective and prospective on the field.

In section 1.1, we discuss the historical evolution of relevant key ideas from the
first attempts to use monochromatic laser fields for selective excitation of molecular
bonds, through the inception of the crucial concept of control via manipulation of
quantum interferences, and to the emergence of advanced contemporary methods
that employ specially tailored ultrafast laser pulses to control quantum dynamics of
a wide variety of physical and chemical systems in a precise and effective manner.
After this historical summary, we review in more detail the recent progress in the
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field, focusing on significant theoretical concepts, experimental methods, and prac-
tical advances that have shaped the development of quantum control during the last
decade. Section ?? is devoted to quantum optimal control theory (QOCT), which
is currently the leading theoretical approach for identifying the structure of controls
(e.g., the shape of laser pulses) that enable attaining the quantum dynamical ob-
jective in the best possible way. We present the formalism of QOCT (i.e., the types
of objective functionals used in various problems and methods employed to search
for optimal controls), consider the issues of controllability and existence of optimal
control solutions, survey applications, and discuss the advantages and limitations of
this approach. In section ??, we review the theory of quantum control landscapes,
which provides a basis to analyze the complexity of finding optimal solutions. Topics
discussed in that section include the landscape topology (i.e., the characterization
of critical points), optimality conditions for control solutions, Pareto optimality for
multi-objective control, homotopy trajectory control methods, and the practical im-
plications of control landscape analysis. The important theoretical advances in the
field of quantum control have laid the foundation for the fascinating discoveries
occurring in laboratories where closed-loop optimizations guided by learning algo-
rithms alter quantum dynamics of real physical and chemical systems in dramatic
and often unexpected way. Section ??, which constitutes a very significant portion
of this paper, is devoted to laboratory implementations of adaptive feedback con-
trol (AFC) of quantum phenomena. We review numerous AFC experiments that
have been performed during the last decade in areas ranging from photochemistry
to quantum information sciences. These experimental studies (most of which em-
ploy shaped femtosecond laser pulses) clearly demonstrate the capability of AFC to
manipulate dynamics of a broad variety of quantum systems and explore the under-
lying physical mechanisms. The role of theoretical control designs in experimental
realizations is discussed in section ??. In particular, we emphasize the importance
of theoretical studies for the feasibility analysis of quantum control experiments.
Section ?? presents concepts and potential applications of real-time feedback con-
trol (RTFC). Both measurement-based and coherent types of RTFC are described,
along with current technological obstacles limiting more extensive use of these ap-
proaches in the laboratory. Future directions of quantum control are considered in
section ??, including important unsolved problems and some emerging new trends
and applications. Finally, concluding remarks are given in section ??.

1.1 Early developments of quantum control

The historical origins of quantum control lie in early attempts to use lasers for
manipulation of chemical reactions, in particular, selective breaking of bonds in
molecules. Lasers, with their tight frequency control and high intensity, were con-
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sidered ideal for the role of molecular-scale ‘scissors’ to precisely cut an identified
bond, without damage to others. In the 1960s, when the remarkable characteristics
of lasers were initially realized, it was thought that transforming this dream into
reality would be relatively simple. These hopes were based on intuitive, appealing
logic. The procedure involved tuning the monochromatic laser radiation to the char-
acteristic frequency of a particular chemical bond in a molecule. It was suggested
that the energy of the laser would naturally be absorbed in a selective way, causing
excitation and, ultimately, breakage of the targeted bond. Numerous attempts were
made in the 1970s to implement this idea [24, 25, 26]. However, it was soon realized
that intramolecular vibrational redistribution of the deposited energy rapidly dissi-
pates the initial local excitation and thus generally prevents selective bond breaking
[27, 28, 29]. This process effectively increases the rovibrational temperature in the
molecule in the same manner as incoherent heating does, often resulting in breakage
of the weakest bond(s), which is usually not the target of interest.

1.1.1 Control via two-pathway quantum interference

Several important steps towards modern quantum control were made in the late
1980s. Brumer and Shapiro [30, 31, 32, 33] identified the role of quantum interfer-
ence in optical control of molecular systems. They proposed to use two monochro-
matic laser beams with commensurate frequencies and tunable intensities and phases
for creating quantum interference between two reaction pathways. The theoretical
analysis showed that by tuning the phase difference between the two laser fields it
would be possible to control branching ratios of molecular reactions [41, 42, 43]. The
method of two-pathway quantum interference can be also used for controlling pop-
ulation transfer between bound states [44, 45] (in this case, the number of photons
absorbed along two pathways often must be either all even or all odd to ensure that
the wave functions excited by the two lasers have the same parity; most commonly,
one- and three-photon excitations were considered).

The principle of coherent control via two-pathway quantum interference was
demonstrated during the 1990s in a number of experiments, including control of
population transfer in bound-to-bound transitions in atoms and molecules [44, 45,
46, 47, 48, 49], control of energy and angular distributions of photoionized electrons
[50, 51, 52, 53] and photodissociation products [54] in bound-to-continuum transi-
tions, control of cross-sections of photochemical reactions [55, 56, 57], and control
of photocurrents in semiconductors [58, 59]. However, practical applications of this
method are limited by a number of factors. In particular, it is quite difficult in
practice to match excitation rates along the two pathways, either because one of the
absorption cross-sections is very small or because other competing processes inter-
vene. Another practical limitation, characteristic of experiments in optically dense
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media, is undesirable phase and amplitude locking of the two laser fields [60]. Due
to these factors and other technical issues (e.g., imperfect focusing and alignment
of the two laser beams), modulation depths achieved in two-pathway interference
experiments were modest: typically, about 25–50% for control of population transfer
between bound states [45, 46, 47, 49] (the highest reported value was about 75% in
one experiment [48]), and about 15–25% for control of dissociation and ionization
branching ratios in molecules [55, 56]. Two-pathway interference control is a nascent
form of full multi-pathway control offered by operating with broad-bandwidth opti-
mally shaped pulses.

1.1.2 Pump-dump control

In the 1980s, Tannor, Kosloff, and Rice [34, 35] proposed a method for selectively
controlling intramolecular reactions by using two successive femtosecond laser pulses
with a tunable time delay between them. The first laser pulse (the “pump”) gener-
ates a vibrational wave packet on an electronically excited potential-energy surface
of the molecule. After the initial excitation, the wave packet evolves freely until
the second laser pulse (the “dump”) transfers some of the population back to the
ground potential-energy surface into the desired reaction channel. Reaction selec-
tivity is achieved by using the time delay between the two laser pulses to control
the location at which the excited wave packet is dumped to the ground potential-
energy surface [3, 5]. For example, it may be possible to use this method to move the
ground-state wave-function beyond a barrier obstructing the target reaction channel.
In some cases, the second pulse transfers the population to an electronic state other
than the ground state (e.g., to a higher excited state) in a pump-repump scheme.

The feasibility of the pump-dump control method was demonstrated in a num-
ber of experiments [63, 64, 65, 66, 67]. The pump-dump scheme can be also used
as a time-resolved spectroscopy technique to explore transient molecular states and
thus obtain new information about the dynamics of the molecule at various stages
of a reaction [68, 69, 70, 71, 72, 73, 74, 75]. In pump-dump control experiments, the
system dynamics often can be explained in the time domain in a simple and intuitive
way to provide a satisfactory qualitative interpretation of the control mechanism.
The pump-dump method gained considerable popularity [3, 5, 14] due to its capa-
bilities to control and investigate molecular dynamics. However, the employment
of transform-limited laser pulses significantly restricts the effectiveness of this tech-
nique as a practical control tool. More effective control of the wave-packet dynamics
and, consequently, higher reaction selectivity can be achieved by optimally shaping
one or both of the pulses. For example, even a chirp of the pump pulse may im-
prove the effectiveness of control by producing more localized wave packets (the use
of pulse chirping will be discussed in section 1.1.6 in more detail). Recent experi-
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mental applications of the pump-dump scheme with shaped laser pulses (optimized
using adaptive methods) will be discussed in section ??.

1.1.3 Control via stimulated Raman adiabatic passage

In the late 1980s, Bergmann and collaborators [76, 77, 78, 79] demonstrated a very
efficient adiabatic method for population transfer between discrete quantum states in
atoms or molecules. In this approach known as stimulated Raman adiabatic passage
(STIRAP), two time-delayed laser pulses (typically, of nanosecond duration) are
applied to a three-level Λ-type configuration to achieve complete population transfer
between the two lower levels via the intermediate upper level. Interestingly, the pulse
sequence employed in the STIRAP method is counter-intuitive, i.e., the Stokes laser
pulse that couples the intermediate and final states precedes (but overlaps) the pump
laser pulse that couples the initial and intermediate states. The laser electric fields
should be sufficiently strong to generate many cycles of Rabi oscillations. The laser-
induced coherence between the quantum states is controlled by tuning the time delay,
so that the transient population in the intermediate state remains almost zero, thus
avoiding losses by radiative decay. Detailed reviews of STIRAP and related adiabatic
passage techniques can be found in [82, 83]. While the efficiency of the STIRAP
method, under appropriate conditions, is very high, its applicability is restricted to
control of population transfer between a few discrete states as arise in atoms and
small (diatomic and triatomic) molecules. In larger polyatomic molecules, the very
high density of levels generally prevents successful adiabatic passage [82, 83].

1.1.4 Control via wave-packet interferometry

Another two-pulse approach for control of population transfer between bound states
employs Ramsey interference of optically excited wave packets [?, ?]. In this method,
referred to as wave-packet interferometry (WPI) [20], two time-delayed laser pulses
excite an atomic, molecular, or quantum-dot transition, resulting in two wave pack-
ets on an excited state. Quantum interference between the two coherent wave pack-
ets can be controlled by tuning the time delay between the laser pulses. For control
of population transfer, constructive or destructive interference between the excited
wave packets gives rise to larger or smaller excited-state population, respectively.
The same control mechanism is also applicable to other problems such as control of
atomic radial wave-functions and control of molecular alignment. WPI was demon-
strated with Rydberg [84, 85, 86] and fine-structure [87, 88] wave packets in atoms,
vibrational [89, 90, 91, 92, 93] and rotational [94] wave packets in molecules, and
exciton fine-structure wave packets in semiconductor quantum dots [95, 96] (for a
detailed review of coherent control applications of WPI, see [20]; the use of WPI
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for molecular state reconstruction is reviewed in [?]). Once again, much more effec-
tive manipulation of quantum interferences is possible in this control scheme when
shaped laser pulses are used instead of transform-limited ones (see section ?? for
details).

1.1.5 Quantum optimal control theory

Although the control approaches discussed in sections 1.1.1–1.1.4 were initially per-
ceived as quite different, it is now clear that on a fundamental level all of them
employ the mechanism of quantum interference induced by control laser fields. A
common feature of these methods is that they generally attempt to manipulate the
evolution of quantum systems by controlling just one parameter: the phase differ-
ence between two laser fields in control via two-pathway quantum interference; the
time delay between two laser pulses in pump-dump control, STIRAP, and WPI.
While single-parameter control may be relatively effective in some simple systems,
more complex systems and applications require more flexible and capable control
resources. The single-parameter control schemes have been unified and generalized
by the concept of control with specially tailored ultrashort laser pulses. Rabitz and
co-workers [36, 37, 38] and others [39, 40] suggested that it would be possible to steer
the quantum evolution to a desired product channel by specifically designing and tai-
loring the time-dependent electric field of the laser pulse to the characteristics of the
system. Specifically, QOCT may be used to design laser pulse shapes which are best
suited for achieving the desired goal [36, 37, 38, 39, 40, 124, 125, 126, 127, 128, ?, 129].
An optimally shaped laser pulse typically has a complex form, both temporally and
spectrally. The phases and amplitudes of different frequency components are op-
timized to excite an interference pattern amongst distinct quantum pathways, to
best achieve the desired dynamics. The first optimal fields for quantum control
were computed by Shi, Woody, and Rabitz [36] who showed that the amplitudes of
the interfering vibrational modes of a laser-driven molecule could add up construc-
tively in a given bond. We will review QOCT and its applications in more detail in
section ?? (for earlier reviews of QOCT, see [3, 5, 130, 131, 11]).

1.1.6 Control with linearly chirped pulses

Laser pulse-shaping technology rapidly developed during the early 1990s [97, 98, 99].
However, the capabilities of pulse shaping were not fully exploited in quantum con-
trol until the first experimental demonstrations of adaptive feedback control (AFC)
in 1997–1998 [440, 478]. Initially, ultrashort laser pulses with time-varying pho-
ton frequencies were used to tune just the linear chirp, which represents an in-
crease or decrease of the instantaneous frequency as a function of time under the
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pulse envelope.1 Linearly chirped femtosecond laser pulses were successfully applied
for control of various atomic and molecular processes, including control of vibra-
tional wave packets [100, 101, 102, 103, 104, 105, 106], control of population trans-
fer between atomic states [107, 108, 109] and between molecular vibrational levels
[110, 111, 112] via “ladder-climbing” processes, control of electronic excitations in
molecules [113, 114, 115, 116, 117], selective excitation of vibrational modes in co-
herent anti-Stokes Raman scattering (CARS) [118], improvement of the resolution of
CARS spectroscopy [119, 120], and control of photoelectron spectra [121] and transi-
tions through multiple highly excited states [122] in strong-field ionization of atoms.
In particular, when the emission and absorption bands of a molecule strongly over-
lap, pulses with negative and positive chirp excite vibrational modes predominately
in the ground and excited electronic states, respectively [100, 104, 105, 106]. Chirped
pulses can be also used to control the localization of vibrational wave packets in di-
atomic molecules, with the negative and positive chirp increasing and decreasing
the localization, respectively [101, 102, 103]. Based on this effect, pump pulses
with negative chirp were used to enhance selectivity in pump-dump control of pho-
todissociation reactions [103]. Recently, the localization effect of negatively chirped
pulses was used to protect vibrational wave packets against rotationally-induced
decoherence [123]. Due to their effectiveness in various applications, chirped laser
pulses are widely used in quantum control. However, by the end of the 1990s,
many experimenters realized that more sophisticated pulse shapes, beyond just lin-
ear chirp, provide a much more powerful and flexible tool for control of quantum
phenomena in complex physical and chemical systems. Femtosecond pulse-shaping
technology is utilized to the fullest extent in AFC experiments where laser pulses
are optimally tailored to meet the needs of complex quantum dynamics objectives
[4, 133, 12, 13, 134, 135, 8, 7, 136, 137, 138, 9, 19]. The enormous growth of this
field during the last decade is reviewed in section ??.

1.1.7 Control via non-resonant dynamic Stark effect

Optimal control of quantum phenomena in atoms and molecules usually operates
at laser intensities sufficient to be in the non-perturbative regime. Thus, controlled
dynamics will naturally utilize the dynamic Stark shift amongst other available phys-
ical processes in order to reach the target. In a recent quantum control development,
Stolow and co-workers proposed and experimentally demonstrated manipulation of
molecular processes exclusively employing the non-resonant dynamic Stark effect
(NRDSE) [?, ?, ?, ?]. In this approach, a quantum system is controlled by an in-
frared laser pulse in the intermediate field-strength regime (non-perturbative but

1The instantaneous frequency ω(t) of a linearly chirped pulse with a carrier frequency ω0 is
given at time t by ω(t) = ω0 + 2bt, where b is the chirp parameter that can be negative or positive.
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non-ionizing). Laser frequency and intensity are chosen to eliminate the complex
competing processes (e.g., multiphoton resonances and strong-field ionization), so
that only the NRDSE contributes to the control mechanism. By utilizing Raman
coupling, control via NRDSE reversibly modifies the effective Hamiltonian during
system evolution, thus making it possible to affect the course of intramolecular
dynamic processes. For example, a suitably timed infrared laser pulse can act as
a “photonic catalyst” by reversibly modifying potential energy barriers during a
chemical reaction without inducing any real electronic transitions [?]. Control via
NRDSE was successfully applied to create field-free “switched” wave packets (which
can be employed, e.g., for molecular axis alignment) [?, ?] and modify branching
ratios in non-adiabatic molecular photodissociation [?, ?].

1.1.8 Control of nuclear spins with radiofrequency fields

One of the earliest examples of coherent control of quantum dynamics is manipula-
tion of nuclear spin ensembles using radiofrequency (RF) fields [?]. The main appli-
cation of nuclear magnetic resonance (NMR) control techniques is high-resolution
spectroscopy of polyatomic molecules (e.g., protein structure determination) [598,
?, ?, ?]. While control of an isolated spin by a time-dependent magnetic field is
a simple quantum problem, in reality, NMR spectroscopy of molecules containing
tens or even hundreds of nuclei involves many complex issues such as the effect of
interactions between the spins, thermal relaxation, instrumental noise, and influ-
ence of the solvent. Therefore, modern NMR spectroscopy often employs thousands
of precisely sequenced and phase-modulated pulses. Among important NMR con-
trol techniques are composite pulses, refocusing, and pulse shaping. In particular,
the use of shaped RF pulses in NMR makes it possible to improve the frequency
selectivity, suppress the solvent contribution, simplify high-resolution spectra, and
reduce the size and duration of experiments [?]. In recent years, NMR became an
important testbed for developing control methods for applications in quantum in-
formation sciences [?, ?, ?, 355, 356]. In order to perform fault-tolerant quantum
computations, the system dynamics must be controlled with an unprecedented level
of precision, which requires even more sophisticated designs of control pulses than
in high-resolution spectroscopy. In particular, QOCT was recently applied to iden-
tify optimal sequences of RF pulses for operation of NMR quantum information
processors [356, 284].



Chapter 2

Molecular Interactions: Light as
controller

A molecule in an electromagnetic field will have an evolution largely controlled by
the field properties such as the amplitude, phase and frequency. When a molecule
is exposed to light a variety of things could happen which could trigger one or all,
of the degrees of freedom of the molecule. The molecule, in accordance with the
law of conservation of energy, will absorb the energy of the field and could lead to
mechanical motion such as translational, vibrational and rotational or could excite
the electronic energy levels which later de-excite to the ground state by emitting
light. The most basic example of this type is often discussed in the case of a two
level system as shown in Fig. 2.

This simple example illustrates how light acts as a controller. From a purely
mechanistic perspective, the scenario depicted in Fig. 2 is a population inversion
due to the incident light of frequency ω = E2−E1

~ and hence controls the dynamics

Figure 2.1: A two level atom interacting with light of frequency ω = E2−E1

~ . Initially
the molecule is in the ground state |E1〉 and by absorbing the photon the molecule
gets excited and will reach |E2〉.

9
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of the system. The field in this case is called as resonant since the frequency of
the field is exactly equal to the difference of the energy levels of the system. The
frequency difference ∆ = ω0 = ω is called as detuning and is an important factor
in practical situations of electromagnetic interaction. Does this population transfer
happen instantaneously ???

Further insight into the above example reveals that for such a well defined
system one does not need any rigorous mathematical and/or numerical modeling to
find the electromagnetic field to control the system. However depending on the task
that we wish to achieve, it will turn out that employing the concepts for control
theory would be useful to optimize the energy of the light pulse. This discussion is
taken up in later chapters.

2.1 Molecular dipole interaction

An initially, electrically neutral molecule when placed in an electric field will trans-
form as a dipole(spatially separated equal and opposite charge) due to the pull on
the positive charge and push on the negative charge. Thus the molecule, apart
from undergoing mechanical twists and turns, will also have a temporal evolution
under the potential energy of the light field, which results in driving the molecule’s
vibrational, rotational and electronic states from an arbitrary initial state.

classically, the energy of a system of charged particles in an electric
field can be approximated to first order as V = D · ~ε, where D =

∑n
i=1 qiri,

where ri denotes the radial position vector for particle i, and where n
denotes the number of particles in the molecule

In classical electrodynamics the energy of a system of charged particles is
governed by the dipole moment ~d = q~r. The energy in presence of electric field ~ε is
given as V = −~d · ~ε. A straightforward extension to a system of charged particles
in an electric field can be approximated to first order as V = · ~ε, where =

∑n
i=1 qii,

where ri denotes the radial position vector for particle i, and where n denotes the
number of particles in the molecule. In general we will have three components of
the dipole vector Dx, Dy and Dz. Assuming a field polarized in the z-direction and
assuming the diameter of the molecule is much smaller than the wavelength of the
light, the interaction potential energy of the molecule is given as

(2.1) V = ~ε(r, t) · ~D ≈ εz(t)Dz.

When treating the system quantum mechanically, since the free Hamiltonian
H0(corresponding to the kinetic energy of the system) is usually a matrix the inter-
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acting dipole moment will now be a matrix dipole moment operator µ̂. Using the
energy eigen states of H0, |ψi〉 we can define the dipole matrix µ̂ = 〈ψi|µ̂(r)|ψj〉,
where the position dependent µ(r) is analogous to . The interaction potential Hamil-
tonian ĤI = −A cos(ωt) · µ̂ and hence the total Hamiltonian is

H = H0 +HI = H0 + µ · ~ε(r, t)

and the corresponding Schrödinger equation is

(2.2)
dψ(t)

dt
=
−i
~

(H0 − µ · ε(t))ψ(t).

The bare Hamiltonian H0 and the dipole operator µ are hermitian as they are
required to have real eigen values to accurately represent a physical situation. In
the conventional quantum mechanical description the interaction Hamiltonian HI

is interpreted as a small perturbation to the actual bare Hamiltonian H0 and there
are many approximation methods developed to solve the above equation.

Another way of looking at Eq. (2.2) is to recognize it as a control equation.
The mathematical structure of Eq. (2.2) can be recognized as what is popularly
known as bilinear control equation which is of the following form for a hermitian
matrices A and B,

dx

dt
= (Ax(t) +Bu(t))x(t)

where u(t) is a time dependent control that can designed to for example to drive
the state x(t) to a predefined final state X(T ). These type of bilinear equations
frequently appear in classical optimal control theoretic problems often encountered
in engineering designs. This equation will be discussed more in later chapters??

Therefore in the Schrödinger equation.2.2 the electric field ε(t) acts as the
time dependent control, solving which leads to time-dependent probability transi-
tions Pij(t) between the energy eigen states |ψi〉 and |ψj〉 of the bare Hamiltonian H0

which is usually time-independent. For a closed system, where the Schrödinger equa-
tion can be exactly solved and the dynamics are Unitary, always leads to time inde-
pendent probabilities and the states in that case are called as ‘stationary states‘. In
the case of an interaction, the Hamiltonian is not known exactly and the Schrödinger
equation cannot be solved exactly and so the time-dependent probabilities.

2.1.1 Representation of the Electric field

The classical theory of light is a well defined field and is discussed in many text books
and so in this section we briefly discuss the representation of light for completeness
and only pertinent to the quantum control theory.
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In performing the quantum control experiments in the actual laboratory, one
uses the laser as the light source and the techniques in this book mainly focus on
designing the pulse shapes to perform the control task at hand. Usually a pulsed
femtosecond laser is used. In theory, laser light is considered as a semiclassical
source and so can be described to a remarkably well using the wave theory. In a
fully quantum picture the finding an optimal pulse translates to finding an optimal
distribution of photons that interact with the physical system under consideration,
which is molecule in the present context.

An electromagnetic wave travelling in the z-direction, in general, is composed
of all possible frequency modes and is written as,

(2.3) ε(t− x/c) = <
{∫ ∞
−∞

A(ω) exp(iφ(ω)) exp[iω(t− x/c)] dω
}

where c = 3 × 108m/s, is the speed of light, t is time in seconds and ω is the
frequency and φ(ω) is the frequency dependent phase. A(ω) is the complex electric
field amplitude in the frequency domain.

In practice, wavelength of highest frequency, which corresponds to the Ul-
tra Violet regime of the electromagnetic spectrum, c/ω ≈ 103 angstroms, whereas
molecular diameter are of the order of single angstroms, and so ωx/c much larger
than molecule. Thus we can approximate Eq. 2.3 as

(2.4) ε(t) ≈ <
{∫ ∞
−∞

A(ω) exp(iφ(ω)) exp(iωt) dω

}
.

The most important components of the field apart from the frequency ω, are the
phase φ(ω) and the amplitude A(ω) in desiging the optimal pulse shapes. Most
Quantum Control processes are sensitive to phase [?] and for most physical systems
phase-only shaping, by fixing the amplitude A(ω) is sufficient for attaining optimal
control.ELABORATE....

The amplitude A(ω) is typically modelled as Gaussian and is true in most of
the practically relevant cases. Thus,

(2.5) <[A(ω)] =
1√
2πσ

exp[−(ω − ω0)
2/σ2]

for some mean frequency ω0 and variance of σ. For a pulsed laser this variance σ is
called bandwidth of the pulse. Since the shape of the pulse need not be preserved as
it propagates, sometimes use of envelope ot shape function will be very helpful. A
standard nonlinear chirp is a Gaussian. With an envelope function s(t) the electric
field will be

(2.6) ε(t) = s(t)<
{∫ ∞
−∞

A(ω) exp(iφ(ω)) exp(iωt) dω

}
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and typical examples of the envelope function are s(t) = sin2(πt/T ) or 1√
2πσ

exp[−(t−
t0)

2/σ2]. The total energy of the of the field is given as the square of the amplitude:

(2.7) E =

∫ ∞
∞
|ε(t)|2 dt =

∫ ∞
∞
|ε(ω)|2 dω

where ε(ω) = A(ω) exp(iφ(ω)) is the electric field in frequency domain and ε(t) =
A(t) exp(iΦ(t)) in the time domain.

The spectral phase φ(ω) and the temporal phase Φ(t) cannot be measured ab-
solutely and only the relevant phase are important. The phase of an electromagnetic
wave is not just a mathematical generlization, but is a well defined property of the
wave. The importance of relative phase is demonstrated in the classic double-slit
experiment. [?].

As an example of the theory developed so far, let us now investigate an har-
monic oscillator in an external external electromagnetic field. Consider a di-atomic
molecule with atomic masses m1 and m2 and are spatially saperated with a distance
r0. The total Hamiltonian H wich is the sum of the free Hamiltonian H0, consisting
of Kinetic and Potential energy, and the interaction Hamiltonian HI is given as

H = − ~2

2m

d2

dr2
+

1

2
kr2 − µ(r) · ε(t)

with m = m1m2

m1+m2
being the reduced mass of the molecule. The corresponding

Schrödinger equation is

(2.8) i~
d

dt
ψ(r, t) =

(
− ~2

2m

d2

dr2
+

1

2
kr2 − µ(r) · ε(t)

)
ψ(r, t).

The dipole moment matrix µ is an N ×N Hermitian matrix in the eigen basis of H0

as described earlier in this section. It can be noted from the above equation that
although a dipole transition matrix may be well defined for a system, it does not
have any effects on the system dynamics in absence of the interaction external field
ε(t).

The diagonal elements of µ are less significant since only the off diagonal
elements are what allow the electric field to drive transition between the states.
This can be seen more explicitly, if H0 and µ are both N × N diagonal matrices,
then Eq. 2.8 can have the solution

(2.9) ψ(t+ ∆t) ≈ exp

 −
i
~(E1 −m1ε(t))∆t 0

. . .

0 − i
~(EN −mNε(t))∆t

ψ(t),
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where the diagonal elements of dipole matrix µii = mi. Suppose if we begin in
the ground state corresponding to energy E1 implying ψ(0) = [1, 0, · · · , · · · , 0]†, the
solution in Eq. 2.9 leads to

ψ(T ) =
∏
n=1

exp(− i
~

(E1 −m1ε(tn))∆t)ψ(0)

and there is no transition to a different system. The only effect of the evolution is
that the initial state is multiplied by an irrelevant global phase, since the expectation
value of any observable Ô is same: 〈ψ(T )|Ô|ψ(T )〉 = 〈ψ(0)|Ô|ψ(0)〉. Thus the
state will not transit to another state. However the ground state energy is being
continuously changed as more and more energy is being added via the field ε(t). This
simple example illustrates that we need the off-diagonal transition matrix elements
to perform any driving of between the states.

In reality however, as observed in the molecular spectroscopy experiments,
only certain direct transitions are possible and may use indirect transitions such
as exciting the molecule to short lived intermediate states and then to the final
target state can be used for the cases where the direct transtions are not allowed.
Whether a direct transition is “forbidded” or “allowed” depends on matrix elements
of the dipole moment operators. The matrix elements of µ can be straightforwardly
calculated once the Schrödinger equation is solved with the free Hamiltonian H0

for the eigen state |ψi〉. If the µij = 〈ψi|µ|ψj〉 = 0 then the transition between
the states |ψi〉 and |ψj〉 is forbidded, while for an allowed transition µij 6= 0. For
simple harmonic oscillator corresponding to the transitions between the diatomic
vibrational states it turns out that the states are given as,

ψν(r) =
1√
2νn!

(mω
π~

)1/4

e−
mωr2

2~ Hν

(
r

√
mω

~

)
where ω =

√
k
m

and Hν(r) = (−1)νer
2 dν

drν
(e−r

2
) is called as the Hermite polynomial

and the corresponding energy eigen values are

Eν = ~ω
(
ν +

1

2

)
.

Expanding the dipole moment µ(r) = µ0 +
(
dµ
dr

)
r̂ + · · · , where µ0 refers to the

permanent dipole moment at the equalibrium and can be ignored. In the first order
term, for most physical systems dµ/dr is a constant α(say) and r̂ is the position
operator. Ignoring the hiher order terms, which is reasonable assumption(??), we
can calculate the dipole matrix elements quite explicitly as 〈ψν(r)|µ(r)|ψ′ν(r)〉 =

α〈ψν(r)|̂(r)|ψ′ν(r)〉. For harmonic oscillator it turns out that

(2.10) 〈ψν(r)|µ(r)|ψ′ν(r)〉 = 0, ∀ν ′ 6= ν ± 1.
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Thus for the vibrational states one can either excite or de-excite only to the immedi-
ate neighbouring states and the selection rule can be succintly written as ∆ν = ±1,
for the states that are solely charecterized by the quantum number ν, and the dipole
matrix will have a banded structure:

µ11 µ12

µ21 µ22 µ23

0 µ32 µ33 µ34
...

...
...

...
. . .

0 0 · · · µN(N−1) µNN


with µij = µji due to the Hermiticity of µ. An important goal in quantum control
is finding the laser pulses that drive the transitions between the molecular energy
eigenstates. The possibility of such transitions a transition depends on the dipole
matrix elements. Conssider the problem of exciting the molecule from the ground
vibrational state ν = 0 to the 1st excited vibrational state with ν = 1 using a
sinusoidal filed, we would need a non-zero matrix element 〈ν = 0|µ|ν = 1〉. On the
other hand considering the problem of exciting the ground vibrational state to, say
3rd excited vibrational state may be possible, inspite of the fact that 〈ν = 0|µ|ν =
3〉 = 0, by involving a multistep level-level transitions such as following the system
in the path: 1→ 2→ 3.

• Excercise: Using the Harmonic oscillator eigen functions, derive the selection
rules shown in Eq. 2.10

2.2 Pictures in Quantum Mechanics

This section should be in the first chapter.

The time dependent Schrödinger equation for a closed system, mathematically
speaking is simply a first order differential equation written as,

(2.11) i~
d

dt
ψ(r, t) = H0ψ(r, t)

and the solutions seeks to find the wavefunction as a function of time: ψ(t). The
dynamics of the system are then Unitary, since the norm of the wavefunction
|〈ψ(t)|ψ(t)〉|2 = |〈ψ(t)|ψ(t)〉|2 = 1 is preserved. The solution of the above equa-
tion then is

(2.12) ψ(t) = U(t, 0)ψ(0), where U(t, 0) = e−
i
~

∫ t
0 H0(t)dt



16 CHAPTER 2. MOLECULAR INTERACTIONS: LIGHT AS CONTROLLER

with ψ(0) being the state at t = 0. This is called as Schrödinger picture where the
states evolve in time and any observable Θ is time independent.

Another conveneint representation is Heisenberg picture, where the states are
independent of time and the observables are functions of time Θ(t). Thus the equa-
tion of motion for the obeservable is

(2.13)
dΘ

dt
= − i

~
[Θ, H]

with [A,B] = Ab−BA is the commutator. In the Heisenberg the time development
of the operator Θ is also given as Θ(t) = U †(t)ΘU(t) and the expectation value of
the observable is given as

(2.14) 〈ψ|Θ(t)|ψ〉 = 〈ψ|U †(t)ΘU(t)|ψ〉 = 〈U(t)ψ|Θ|U(t)ψ〉 = 〈ψ(t)|Θ|ψ(t)〉.

The last term in the above equality is the expectaion value in the Schrödinger picture
and it shows that the expectaion values in both pictures is equal. The basic differnce
being that in the Schrödinger picture the evolution of the states is governed by the
total Hamiltonian, H and the observable do not change, while in the Heisenberg
picture the states do not change while the evolution of the observables is governed
by the total Hamiltonian H.

In treating the system interacting with an external potential or field, the total
Hamiltonian H(t) = H0 + H1(t) = H0 − µ · ε(t). It turns out another conveneint
picture called as Interaction picture, where both the states and observables evolve
in time. The evolution of the states is determined by the interaction Hamiltonian
H1(t) and the evolution of the observables in determined by the free Hamiltonian
H0 . This also is equivalent to solving the problem in the system reference reference
frame and is performed as,

HI(t) = exp(
i

~
H0t)H1(t) exp(− i

~
H0t)

and the state vectors in this basis are |φ(t)〉 = exp
(
i
~H0t

)
|ψ(t)〉 where ψ(t) is the

state in the Schrödinger picture. Since at t = 0 the exponent exp
(
i
~H0t

)
is identity

implying that the initial state in both the pictures coincide. We can also get the
relation between the matrix elements of the Hamiltonian in both pictures.

〈j|HI |i〉 = 〈j| exp(
i

~
H0t)H1(t) exp(− i

~
H0t)|i〉

= exp
i(Ej−Ei)t

~ 〈j|H1(t)|i〉

. To derive the Schrödinger equation in the interaction picture consider the time
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evolution of |φ(t)〉,

d

dt
|φ(t)〉 =

i

~
H0|φ(t)〉 − i

~
exp(

i

~
H0t)H(t)|ψ(t)〉

=
i

~
H0|φ(t)〉 − i

~
H0 exp(

i

~
H0t)|ψ(t)〉 − i

~
exp(

i

~
H0t)H1(t)|ψ(t)〉

=
i

~
H0|φ(t)〉 − i

~
H0|φ(t)〉 − i

~
exp(

i

~
H0t)H1(t)|ψ(t)〉

= − i
~

exp(
i

~
H0t)H1(t) exp(− i

~
H0t)|φ(t)〉

= − i
~
HI(t)|φ(t)〉

We therefore can define the unitary propagator in the interaction picture as

(2.15) UI(t) = T exp
[
− i

~

∫ t

0

HI(t
′)dt′

]
where T is called the time ordering operator. We can derive the relation between
the unitary propagator in Schrödinger picture and interaction picture which may
be useful when dealing with the change in representations. Noting that the free
hamiltonianH0 is always time independent and |φ(t)〉 = UI(t) |φ(0)〉 and by denoting
U0 = exp

(
i
~H0t

)
, starting from the state in the interaction picture

|φ(t)〉 = U0 |ψ(t)〉

UI |φ(0)〉 = U0 exp

(
− i

~

∫ t

0

H(t′)dt′
)
|ψ(0)〉

UI |φ(0)〉 = U0Us |ψ(0)〉
UI = U0Us

since the initial state in both pictures is identical.

2.3 Time-dependent Perturbation theory

The Schrödinger equation in give Eq. 2.2 often cannot be solved exactly except
in very few lower dimensional such as a two energy level systems. In general, as
the dimension of the Hilbert space grows, the Schrödinger equation in presence
of external field often becomes intractable. It is a common practice to treat the
external field as a perturbation to the free Hamiltonian H0 and assume that the
perturbation be small when compared to the eigen values of H0. This theory is
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called perturbation theory and the corrections to the energy eigen functions as well
as to the energy eigen values can be found to reasonable degree of accuracy.

Perturbation theory seeks to compute the time evolution of state of the system
in the presence of the applied field in terms of linear combination of the unperturbed
wavefunctions by using a Taylor expansion of the ψ(t) in orders of the interaction
Hamiltonian strength λ which is typically used to compute the transition probabil-
ities in weak fields. In general this indicates that the optimal fields are resonant,
since in spectroscopic experiments the absorption and emission of charecteristic spec-
tral frequencies corresponding to transitions between the energy levels Ei, Ej of a
molecule. However, these solutions are approximate, and control theory is required
to compute the optimal fields. For analytical insight, we will begin with a study of
perturbation theory calculations of the transition probability.

The dynamics of the system in the interaction picture can be obtained from
the unitary propagator given in Eq. 2.15, which also can be rewritten as a differential
equation from the Schrödinger equation for |φ(t)〉,

d

dt
|φ(t)〉 = − i

~
HI(t) |φ(t)〉

d

dt
UI(t) |φ(0)〉 = − i

~
HI(t)UI |φ(0)〉

which immediately leads to

(2.16)
d

dt
UI(t) = − i

~
HI(t)UI(t).

with UI(0) = IN .

This differential equation 2.16 is often becomes cumbersome for higher dimen-
sional systems since it involves matrices. A formal solution for Eq. 2.16 can be
written as, along with the initial condition

(2.17) UI(t) = IN −
i

~

∫ t

0

HI(t
′)UI(t

′) dt′.

Instead of representing this as a matrix exponential, we may expand the exponential
in a series and is called as Dyson series, which is equivalent to the following iterative
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representation of UI(t):

UI(t) = IN −
i

~

∫ t

0

HI(t
′)UI(t

′) dt′

= IN −
i

~

∫ t

0

HI(t
′)

[
IN −

i

~

∫ t′

0

HI(t
′′)UI(t

′′) dt′′

]
dt′

= IN −
i

~

∫ t

0

HI(t
′) dt′ + (− i

~
)2

∫ t

0

∫ t′

0

HI(t
′)HI(t

′′) dt′′dt′ + · · ·+

(− i
~

)n
∫ t

0

∫ t′

0

· · ·
∫ tn−1

0

HI(t
′)HI(t

′′) · · ·HI(t
n) dtn · · · dt′ · · ·

Since one is more interested in finding the transition amplitudes cji(t) =
〈j|UI(t)|i〉 and to approximate it to arbitrary order using the above series expansion
of UI(t)

c1ji(t) = −〈j|λ i
~

∫ t

0

HI(t
′) dt′|i〉

c2ji(t) = 〈j|
2

~2

∫ t

0

∫ t−1

0

HI(t
′′) dt′′ dt′|i〉

...

cnji(t) = 〈j|(−λ i
~

)n
∫ t

0

· · ·
∫ tn−1

0

HI(t
′) · · ·HI(t

n) dtn · · · dt′|i〉

2.4 Quantum interference between pathways

The transition of the molucule from state i to state j in reality takes several routes.
In the perturbation expansion for the probability amplitudes in the previous section,
each order of the probability amplitude is called as a pathway. Due to the presence
of the imaginary number i(not to be confused with the state|i〉) these amplitudes in
general are complex number and carry a imaginary phase which cannot be neglected
since cnji is only a part contributing to the total probability. Quite intuitively we
can compare the amplitudes with the amplitudes of the electric field in the famous
double-slit experiments, where the final intensity on the screen is a definite function
of the relative phase between the amplitudes that are emerging from the two pin-
holes. In the present case the total transition probability(which is analogous to the
intensity on the screen) between the states i and j at time t upto nth order is then
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given as

Pij(t) = |c1ji(t) + c2ji(t) + · · ·+ cnji(t)|2 =
[
c1ji(t) + c2ji(t) + · · ·+ cnji(t)

]∗
×
[
c1ji(t) + c2ji(t) + · · ·+ cnji(t)

]
.

This is a remarkable result and is hallamark of quantum mechanics in the context
of molecules and demonstrates the property of quantum intereference between paths
due to the presence of coherence terms cxji(t))

∗cyji(t).

In presence of a well defined external electric field we can derive explicit ex-
pression for various orders of the probability amplitudes. Consider a field in Fourier
series representation

ε(t) =

∫ ∞
−∞

dω A(ω) exp(iφ(ω)) exp(−iωt)

and the interaction Hamitonian HI(t)

HI(t) = exp(
i

~
H0t)[−µ · ε(t)] exp(− i

~
H0t)

and noting that 〈j|
∫ t

0
HI(t) dt|i〉 = −

∫ t
0
ε(t)〈j| exp( i~H0t)µ exp(− i

~H0t)|i〉 dt we get
for the first order probability amplitude as

c1ji(t) =
i

~
〈j|µ|i〉

∫ t

0

ε(t) exp(
i

~
(Ej − Ei)t)dt

=
i

~
〈j|µ|i〉

∫ ∞
−∞

dω A(ω) exp(iφ(ω))

∫ t

0

exp((
i

~
(Ej − Ei)− iω)t)dt.

Making the substitution ωji ≡ Ej−Ei
~ and considering the long-time limit, t −→ ∞,

the temporal integration is easy to compute in a closed form if we further set the
initial time as −∞ and the final time as +∞ we get∫ +∞

−∞
exp[i(ωji − ω)t′] dt′ = 2πδ(ωji − ω)

we get the first order probability amplitude as

c1ji(∞) = 〈j|µ|i〉
∫ ∞
−∞

dω A(ω) exp(iφ(ω))2πδ(ωji − ω)

and due to the delta function it requires ω = ωij in order to have a nonzero con-
tributions and thus in this asymptotic time limit, the perturbation theory demands
the external field be in resonance with the molecular frequency. Therefore we have

(2.18) c1ji(∞) =
2πi

~
〈j|µ|i〉A(ωji) exp(iφ(ωji)).
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Earlier we have mentioned that the phase of the pulse is extremely important and
now from the above equation we can see that the optical phase now translates to the
phase between the pathways. But if we use only the transition probability amplitude
with just the first order we immediately see that

(2.19) |c1ji(∞)|2 =
4π2

~2
|〈j|µ|i〉|2|A(ωji)|2

and the phase is irrelavant for the net probability, thus we are not using all infor-
mation contained in control to drive system to target state.

In an optimal control experiment very often we may want to control the tran-
sition between different final states of the molecule. A simple example could be
preparing a superposition states for application in quantum computing. Controlling
different final states indeed translates to controlling the ration of the probabilities

Pji and Pki and is called as branching ratio, R =
Pji
Pki

=
|cji(∞)|2
|cki(∞)|2 . Ideally we would

want to control this ration by adjusting the field parameters such as phase and
amplitude. Using Eq. 2.19 we get,

R =
|cj(∞)|2

|ck(∞)|2
=
|A(ωji)|2|〈i|µ|j〉|2

|A(ωki)|2|〈i|µ|k〉|2
.

which is independent of the field phases. The presence of two different frequencies ωji
and ωki, the multichromaticity of the laser field is important because each transition
pathway requires a corresponding field mode tuned to ωji.
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Chapter 3

(Classical)Optimal Control theory

Figure 3.1: A system evolving or driven by external forces from here to there can
take several paths for instance a and b. The theory of optimal control aims at
designing the external control such that the evolution will follow a desired path that
makes optimal use of the resources at hand.

Very often, as in the case of every invention, engineering new devices and
technologies primarily we are interested in controlling the system, and making it
perform in a precisely defined manner. Optimal control theory aims at designing
controls,optimized over the requirements, which either control a system at a set
point such as temperature of a room or drive the system to a well defined final state

23
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starting from an arbitrary initial state. Without a well designed control, often a well
designed system could not be of much use. A simple and everyday example is the
accelerator(gas pedal) and the brake of a car. Without the brake, the accelerator is
not of much use, and brake is the controller of the car speed. In this simple case the
control(brake) is applied by judging the speed of the car by the driver and therefore
not a fully automated control since the human intervention is inevitable. On the
other hand, another simple and everyday example of a fully automated control is
the thermistor that we use to control the temperature of a room. In this case the
thermocouple acts as a control which monitors the temperature and heats the room
when the surrounding temperature is below the set value and vice-versa.

Lets consider a simple dynamical system, and whose state x(t) can be deter-
mined by a first order differential equation,

(3.1)
dx(t)

dt
= f(x(t), u(t), t),

where f could be any function which in general depends on state x(t), control u(t)
and time t......

3.1 Euler-Lagrange equations

Optimal control theory has its roots in calculus of variation which aims at maximiz-
ing a functional(functional is a function of a function). In general a functional could
be a a function of initial state, final state and the cost associated in reaching the final
state, all of which could be functions of some system dependent parameters. There
are three types of optimal control functionals,Bolza, Lagrange and Mayer that are
used in the literature and are suffice to deal with most of the physical systems. (Are
there any other functionals besides these??)

Consider the state of the system denoted by x(t) and the control u(t), the
most “general” cost functional called as Bolza functional is given as:

(3.2) J [x(·), u(·)] = F (x(T )) +

∫ T

0

L(x(t), u(t)) dt.

The term J [x(·), u(·)] is functional, since F (x(T )) is the function often depends
only on the final state x(T ) and be thought of as an input-output relation, and
L(x(t), u(t)) is lagrange function and is same is the one we encounter in calculus of
variation.

The integral
∫ T

0
L(x(t), u(t)) dt represents the cost associated, and if this is

the only term present then the cost functional J is called as the Lagrange type,
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which physically represents the case where accuracy of reaching the final state can
be compromised, but the main goal is to minimize the cost, energy, in reaching the
target. On the other hand in the event when we demand the system to reach the
exact final state and do not mind in the cost(energy) expended, we will only have
the term F (x(T )) and the cost functional is then said to be Mayer type.

Once the type of problem is decided the optimal control problem in Eq. 3.2
can be stated as

(3.3) max
u(·)

J [x(·), u(·)]

subject to the constraints involved in the system as represented by dynamical dif-
ferential equation of the system.

In Eq. 3.2 the Lagrange term does not necessarily incorporate the constraints
of the system as given by the dynamical equations the system follows. Therefore,
define a Lagrangian functions J̄ that incorporates the constraints of the dynamical
system and is given as

(3.4) J̄ [ x(·), φ(·)] = F (x(T )) +

∫ T

0

[λL(x(t), u(t)) + 〈φ(t), f(x(t), u(t), t)− ẋ〉] dt

where is the lagrange multiplier and φ(t) is????.

Following the calculus of variations we can define a Hamiltonian function, also
known as PMP-Hamiltonian in control theory for the reasons explained in the next
section,

(3.5) H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t), f(x(t), u(t), t)〉
where φ(t) is called the costate for reasons that will be explained later. Since the
inner product is linear, 〈φ, f − ẋ〉 = 〈φ, f〉 − 〈φ, ẋ〉 and expressing the Lagrangian
in terms of H in Eq. 3.4 we get,

(3.6) J̄ [ x(·), φ(·)] = F (x(T )) +

∫ T

0

H(x(t), φ(t), u(t)) dt−
∫ T

0

〈φ, dx
dt
〉 dt

and integrating 〈φ(t), dx(t)
dt
〉 by parts we arrive at

(3.7)

J̄ = F (x(T ))−〈φ(T ), x(T )〉+〈φ(0), x(0)〉+
∫ T

0

H(x(t), φ(t), u(t))+〈dφ(t)

dt
, x(t)〉 dt.

Adopting calculus of variation the solution of the optimal controlu(t) can be
found by maximizing J̄ . The first-order variation will be given as,

δJ̄ = 〈∇x(T )F (x(T ))− φ(T ), δx(T )〉+ 〈φ(0), δx(0)〉+

+

∫ T

0

〈∇x(t)H +
dφ(t)

dt
, δx(t)〉+∇u(t)H · δu(t) dt.
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As stated above an ideal control can be obtained by minimizing the cost func-
tional designed, i.e. by setting

δJ̄ = 0

for any δu, and for any δx(t). This condition is analogous to the principle of least
action in calculus of variation in which the action is minimized and thus the cost
function J̄ is an analogous quantity to action in classical Hamiltonian dynamics.
This condition further implies the integrand in the equation for δJ̄ is zero and thus
leads to the following two Euler-Lagrange equations:

∇x(t)H +
dφ(t)

dt
= 0(3.8)

∇u(t)H = 0, 0 ≤ t ≤ T.(3.9)

The first Euler-Lagrange equation 4.15 along with the definition of the PMP-
Hamiltoniancan be used to generate the dynamical equation of the co-state or ad-
joint state:

dφ(t)

dt
= −∇x(t)H = −λ∇x(t)L(x(t), u(t))−∇x(t)〈φ(t), f(x(t), u(t)))〉,

3.1.1 Examples of various types of cost functionals

3.1.2 Linear and Bi-linear control systems

For linear control systems such as

dx(t)

dt
= Ax(t)

for an hermitian matrix A for a generic case, we can make the identification (How
is this identification done??? )

∇x(t)(H− λL) = ATφ(t)

and subsequently using the first Euler-Lagrange equation 4.15 we get the co-state
dynamical equation for linear control:

(3.10)
dφ(t)

dt
= −λ

(
∇x(t)L

)
− ATφ(t).

Note that the co-state in this case of linear system is not written interms of the
state x(t) for reasons that will be made clear in a moment.
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Now consider a bilinear control system

dx(t)

dt
= (A+Bu(t))x(t)

where A and B are hermitian matrices, u(t) is the control. Bilinear control systems
are close to many practical situations such as a molecular system interacts with an
external field ε(t) we have the Schrödinger equation as

d

dt
ψ(t) =

−i
~

(H0 − µ · ε(t))ψ(t)

for an hermitian matrices H0 and µ which is a bilinear control system where ε(t) is
the control. The second Euler-Lagrange equation is simply the ODE of the control
system, which is said to be the dynamical equation of the variational system. For
bilinear systems, we have 〈δφ(t), (A+Bu(t))x(t)− dx(t)

dt
〉 = 0, ∀ δφ(t).Based on the

dynamical and adjoint equations, we have

d

dt

(
φ(t)x†(t)

)
=
dφ(t)

dt
x†(t) + φ(t)

dx†(t)

dt

= φ(t)(A+
∑
i

Biui(t))x(t)− φ(t)(A+
∑
i

Biui(t))x(t) = 0

i.e., matrix elements of φ(t)x†(t) are constants of the motion and, in particular,
x†(t)φ(t) = x†(T )φ(T ), so we may express the costate vector in terms of the state
vector: φ(t) = x(t)x†(T )φ(T ).
For linear systems, it is not possible to express φ(t) in terms of x(t) in this simple
general way because an analogous constant of the motion does not exist. The explicit
expression for φ(t) will depend on the specific form of the matrices A, B.

If the cost function is of Mayer or Bolza type (latter required for linear sys-
tems), the 1st E-L equation is associated with boundary condition

(3.11) φ(T ) = ∇x(T )F (x(T )), [Show the proof]

Note that the boundary conditions for the optimal control problem with endpoint
cost, specified in the variational and adjoint equations, are “split” between the initial
and final times; the costate φ(t) is propagated backwards in time starting from φ(T ),
whereas the “state” x(t) is propagated forward in time starting from x(0).

Example:

3.2 The Pontryagin Maximum Principle

The Euler-Lagrange equations described in the previous section can also derived
from Pontryagin Maximum Principle, which also states the necessary condition to
find an optimal control with a fixed final time T .
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Theorem 3.2.1 (Pontryagin maximum principle) Consider the problem of steering
the control system

ẋ = f(x, u), x ∈M, u ∈ Ω ⊂ Rk,

where M is the state space of the system, from some initial state x(0) = x0 to some

final state x1 while minimizing a cost of the form
∫ T

0
f 0(x, u)dt. The maximum

principle states that if the couple ū(t), x̄(t) is optimal, there exists an absolutely
continuous vector λ(t) ∈ Rn and a constant λ ≤ 0, such that the PMP-Hamiltonian
function h(x(t), λ(t), u(t)) = 〈λ(t), f(x(t), u(t))〉+ λ0f

0(x(t), u(t)) satisfies

h(x̄(t), λ(t), ū(t)) = maxuh(x̄(t), λ(t), u)

and

λj(t) = − ∂h

∂xj
, j ∈ 1, ..., n.

Moreover, denoting the tangent space to the manifold M at state x(t′) by Tx(t′)M ,
we have 〈λ(0), Tx(0)M〉 = 〈λ(T ), Tx(T )M〉 (transversality condition) [249]. If the
final time T is fixed, h(x̄(t), λ(t), ū(t)) is constant, whereas if T is allowed to vary,
h(x̄(t), λ(t), ū(t)) = 0.

This theorem is analogous to the Hamiltonian dynamical equations in Newtonian
dynamics. If the control objective is to minimize the final time T insteadof a cost of
the form above, the optimal trajectory on [0, T ] is associated with the Hamiltonian
−λ0 + 〈λ(t), f(x(t), u(t)). In this case, maxuh(x̄(t), λ(t), u) = 0 in [0, T ], and we
have the additional condition that if λ0 = 0, then λ(t) 6= 0 for any t [249].

A corollary of the above PMP-theorem for Mayer type problems is
Corollary: An optimal control ū(·) that solves the control problem max J̄ satisfies
∂H
∂u(t)

= 0 for a matrix φ(T ) = ∇x(T )F (x(T )) for Bolza or Mayer functionals (other-

wise unspecified for Lagrange functionals) and scalar λ where at least one of φ(T ), λ
is nonzero.

3.3 Optimality conditions: Linear Control prob-

lems

From the PMP-theorem we can deduce the conditions that determine if the system
is optimally controllable. Satisfaction of the first-order conditions following from
the PMP is a necessary but not sufficient condition for optimality of a control ε(·).
So-called Legendre conditions on the Hessian ∂2H

∂u(t)∂u(t′)
, which depend on the type
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of cost, are also required for optimality. In this section we elucidate the optimality
conditions for linear systems..

The first Euler-lagrange equation for linear system is given in Eq. 3.10, which
gives us the dynamical equation for the adjoint state. The second Euler-Lagrange
equation for linear system leads us to

∇u(t)H = 0, 0 ≤ t ≤ T

= λ∇u(t)L(u(t)) + 〈B, φ(t)〉 = 0(3.12)

Eq. 3.12 can also be deduced from the PMP-theorem, which for linear systems
demands that

(3.13)
∂HL

∂ui(t)
= λ

∂L(u(t))

∂ui(t)
+ 〈φ(t),~bi〉 = 0, 0 ≤ t ≤ T,

where HL represents the PMP-Hamiltonian for cost functionals of the Lagrange
type and ~bi is i-th column of B. In general the space of admissible controls u(·)
denoted K is not completely acessible. Impostion of endpoint constraint on the
state for Lagrange functionals places restrictions on the adjoint state φ(T ) and
hence restricts admissible optimal solutions(controls) to a subspace SL ⊂ K and
thus a unique control is then specified.

For cost functionals of the Bolza type we have a similar equation with HL

replaced with HB, the PMP-Hamiltonian for Bolza type. Thus we have

(3.14)
∂HB

∂ui(t)
= λ

∂L(u(t))

∂ui(t)
+ 〈φ(t),~bi〉 = 0, 0 ≤ t ≤ T,

along with the boundary condition for the adjoint state, φ(T ) = ∇x(T )F (x(T ))
for linear systems. Due to an explicit boundary condition, φ(T ), for Bolza-type
functionals, the PMP can explicitly specify a unique optimal control ū(·) ∈ K in the
absence of an endpoint constraint, since it may be possible to solve for ū(·) when
φ(T ) = ∇F (x(T )) 6= 0; a unique control is specified there is a unique state that
maximizes F (x).

In case of Mayer type cost functionals we do not have the Lagrangian L and
hence we have

(3.15)
∂HM

∂ui(t)
= 〈φ(t),~bi〉 = 0, 0 ≤ t ≤ T,

along with the boundary condition φ(T ) = ∇x(T )F (x(T )) for the adjoint state and
for this type of cost functionals the PMP condition defines a submanifold SM ⊂ K of
codimension equal to the number of constraints present in the condition∇F (x(T )) =
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0(e.g., N2, N2−1, or 1 for unitary propagator, density matrix or observable control,
respectively). We will focus on analytical solutions to OCT problems with Bolza
costs or Lagrange costs with a terminal constraint, because a unique optimal control
exists for these problems.

Example that connects with the previous example in this chapter

3.4 Analytic Solutions: General Guidelines

The existance of the solution, an optimal control is discussed in the previous section.
In order to achieve the task usually one has to pay the cost which is enocoded in the
Lagrange term of Eq. 3.4. There are mainly two types of Lagrange cost function in
determining the solution strategy and charecteristics of closed form optimal control
solutions. The first type is linear cost function, which has the form:∫ T

0

cTx(t) dt

for some constant c. The second type of cost function is called the quadratic cost
function and is has the general form

1

2

∫ T

0

xT (t)Qx(t) dt

where Q is not necessarily positive-definite, but symmetric and hence a quadratic
form of cost function.

Solving optimal control problems in closed form is non-trivial task because one
must not only integrate systems of coupled differential equations as the differential
equations are expressed parametrically in terms of controls and one must simultane-
ously solve for the optimal values of all these parameters. The solution to a control
problem, either in the parametric form of the controls or the explicit function is
called as the control law.

One can solve the optimal control problems either from Euler-Lagrange equa-
tions or the PMP-theorem. In general solving an optimal control problem involves
the following steps:

1. Find the dynamical equations for the adjoint state φ(t), for the control system.

2. Express the control u(t) in terms of the state x(t) and the costate φ(t)

3. If the adjoint equations are uncoupled to the dynamical equations,
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(a) integrate them and express undetermined integration constants in terms
of φ(T ).

(b) Insert this solution for φ(t) into the dynamical equations and solve for
the optimal control.

4. If the adjoint equations are coupled to the dynamical equations,

(a) solve the system simultaneously (e.g.,using Laplace transforms) express
integration constants in terms of φ(T ) and the known initial conditions
x(0).

(b) If the cost functional is Lagrange, with an endpoint constraint on the
state, use this constraint to obtain φ(T ) and hence explicit solutions for
φ(t), x(t).

(c) If the cost functional is Bolza, use φ(T ) = ∇F (x(T )) to obtain a relation
between φ(T ) and x(T ); substitute this implicit expression for φ(T ) into
all equations to obtain explicit expressions for all constants and determine
x(t), φ(t).

(d) Use the resulting explicit solutions for x(t), φ(t) in the equation for u(t)
to obtain the optimal control ū(t).

3.4.1 Linear system: An example

As an application of the theory developed so far, let us take up the example of solving
the optimal contorl, i.e. finiding the control law for controlling the temperature in
a room. The temperature in a room is denoted y(t). It is desired to heat the room
(to a target temperature) using the smallest possible amount of energy (heat). Let
the ambient (external) temperature be denoted ye. The rate of heat supply to the
room is denoted u(t). The dynamics of temperature change are then given by

(3.16)
dy

dt
= −a(y(t)− ye) + bu(t)

where a, b are constants depending on the insulation and rate of heat transfer. Let
the total energy (heat) be given by 1

2

∫ T
0
u2(t) dt. We are given the initial tempera-

ture x(0).

The problem: Calculate the control function ū(t) that heats the room to
temperature yf at time T while minimizing the energy used, using two possible

performance indices: a) J = 1
2

∫ T
0
u2(t) dt this case corresponds to the demand that

the final state must be precisely yf ; b) J = k[y(T ) − yf ]2 + 1
2

∫ T
0
u2(t) dt, this case

corresponds to the situation that the final temperature need not be precisely yf .
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Solution: To simplify the problem, first let us perform a change of variable in
the system differential equation 3.16. Making x(t) = y(t) − ye and xf = yf − ye
leads us to

(3.17)
dx

dt
= −ax(t) + bu(t)

which has a bi-linear form and in case of (a) where the cost functional is of Lagrange
type, the problem now is min

u(t)
J subject to the above equation and x(T ) = X(T ) =

100(say).

On the other hand when the cost functional is Bolza type

J = F (x(T )) +

∫ T

0

L(t) dt

Following the guidelines outlined in the previous section, first we need to obtain
the dynamical equation for the adjoint state φ(t) and we need to first find the PMP-
Hamiltonian which is given as,

H(x(t), φ(t),u(t)) = λL(x(t),u(t)) + 〈φ(t), Ax(t) +Bu(t)〉

=
1

2
λu2(t)− φ(t)ax(t) + φ(t)bu(t)

and using the First Euler-Lagrange equation, the adjoint dynamical equation is given
as,

dφ(t)

dt
= −∇xH(x(t), φ(t), u(t))

= − ∂

∂x(t)
[−φ(t)ax(t) + φ(t)bu(t)]

= φ(t)a

To obtain the functional form of the adjoint equation φ(t), we need to integrate
the above 1st order ODE with a being a constant coefficient. We thus obtain,

φ(t) = c exp(at)

where c is integration constant and can be obtained from the boundary condition
for φ(T ). Therefore

c = exp(aT )φ(T )

gives us the solution of the adjoint equation as

(3.19) φ(t) = exp[−a(T − t)]φ(T )
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Now applying the second Euler-Lagrange equation we get

∂H

∂u(t)
= φ(t)b+ ū(t) = 0, 0 ≤ t ≤ T

=⇒ ū(t) = −φ(t)b(3.20)

where ū(t) is the optimal control. Now using the solution for the adjoint equation,
φ(t) from above in the dynamical equation for the system we get

dx

dt
= −ax(t)− b2φ(t)

= −ax(t)− b2 exp[−a(T − t)]φ(T )(3.21)

The above dynamical equation for the system, can be analytically integrated using
Laplace transforms [?]. The following three identifications will be useful

• The Laplace transform of ax(t) is aX(s)

• The Laplace transform of exp(−at) is 1
s−a

• Laplace transform of dx
dt

is sX(s)− x(0)

where s is frequency. Thus in the frequency domain the system dynamical equation
will take the form,

(3.22) X(s) =
x(0)

s+ a
− b2 exp(aT )φ(T )

1

(s+ a)(s− a)
.

Performing an inverse Laplace transform we arrive at,

(3.23) x(t) = x(0) exp(−at)− x(0)b2 exp(aT )φ(T )

a
sinh(at)

where we used the inverse Laplace transforms: L−1( 1
s+a

) is exp(−at) and L−1( 1
(s+a)(s−a)) =

sinh(at)
a

.

From Eqs. ?? we can see that both optimal control and the state are solved
but are implicitly expressed in terms of the boundary condition on the adjoint state
φ(T ), and so the problem will be completely solved once we have the φ(T ). There are
two ways to obtain φ(T ) depending on the cost functional type: Lagrange or Bolza.
When dealing with the Lagrange cost we have well defined boundary condition on
the state, x(T ) = xf which can be used in Eq. 3.23 leading to

xf = x(0) exp(−aT )− x(0)b2 exp(aT )φ(T )

a
sinh(aT )

φL(T ) =
a

x(0)b2 exp(aT ) sinh(aT )
(x(0) exp(−aT )− xf )(3.24)
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where the subscript L denotes the Lagrange type. When the cost function is of the
Bolza type we can use the boundary condition, noting for the current problem at
hand F = k [x(T ) = xf ]

2, we have

(3.25) φB(T ) = ∇xF (x(T )) = 2kx(T )

where the subscript B denotes the Bolza type. Thus we have the solution for the
state in both the cases.

To obtain the optimal control ū(t) we can use Eqs. ??, leading us to

ū(t) = −φ(t)b

ūk(t) = exp[a(T − t)]φk(T )b

where k = L refers to Lagrange type and Eq. 3.24 must be used, for k = B Eq. 3.25
must be used.



Chapter 4

Quantum optimal control theory

4.1 Introduction

Optimal control theory[OCT] as described in chapter 4, has been tremendously suc-
cessful in many of the classical engineering application ranging from sophisticated
robotics to the design on thermistors for everyday use. Carrying forward the tremen-
dous success of the OCT to the molecular system requires the basic formalism of the
OCT to be treated in accordance with the laws of quantum mechanics and hence is
termed as quantum optimal control theory or more generally quantum control. His-
torically, the origins of quantum control can be traced back to early attempts at
the use of lasers for the selective breaking of bonds in molecules. The concept was
based on the application of monochromatic laser radiation tuned to the particular
vibrational frequency that would excite and, ultimately, break the targeted chem-
ical bond. A relatively new paradigm of quantum control is towards the quantum
information processing, where control of the temporal evolution of states, which are
used as information carriers, is desired.

4.2 State manifolds and tangent spaces

In quantum mechanics the states, |ψ(t)〉 are described by complex vectors in Hilbert
space H, with a well defined norm at all times t. The Hilbert sphere SH is the
space of pure states. The quantum states |ψ〉 evolve on this sphere according the
Schrödinger equation for the state matrix or unitary propagator U(t). The manifold
of states is described by the unitary group U(N). Quantum control is achieved by
controlling the propagator U(t) and since the map U(t) 7→ ψ(t) is many-to-one,
achieving a control over U(t) is generally more difficult. Further a point on this

35
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sphere represents a state at the respective time. From geometrical point of view we
can define tangent space to a point on the Hilbert sphere SH as intuitively the flat
place touching the manifold at that point. It is generally important when there are
constraints on the components of the state vector (e.g., sphere S2 embedded in R3).
Formally, the tangent space at p is the set of all tangent vectors to the manifold
at p, with each tangent vector of a smooth curve σ (in the ambient space) passing
through p. σ(0) = p, dσ

dt
|t=0 = v.

Tangent spaces form an important component in quantum control as the ex-
istence of tangent vectors represents various possible controls that can then be de-
signed and so it is helpful to define the tangent spaces for both Hilbert sphere SH
and to the unitary group U(N .

• Tangent space to SH: Let SH denote the Hilbert (complex) sphere, the 2N −1
dimensional space of all N -component complex vectors whose (Hermitian)
norm 〈ψ|ψ〉 = 1. Then the tangent space TS is the set of all complex vectors
ψ⊥ satisfying 〈ψ|ψ⊥〉 = 0.

• Tangent space to U(N): TUU(N) := {UA : A† = −A} is the tangent space to
the unitary group U(N) at U . Here, A = iB (B = B†) is a skew-Hermitian
N ×N matrix, an arbitrary element of the Lie algebra u(N).

the above discussion on tangent spaces needs to be followed by ex-
amples and pictorial illustrations??

4.3 Controlled quantum mechanical systems

In this section, we present basic results from quantum theory, which are needed to
describe the dynamics of closed quantum systems, that are isolated from any possible
environmental interaction. Such an evolution is always unitary propagator, U(t).
Coherent control of quantum phenomena involves the application of classical fields
(e.g., laser pulses) to quantum systems (e.g., atoms, molecules, quantum dots, etc.).
Consider first a coherently controlled closed quantum system (i.e., a system isolated
from the environment during the control process), whose evolution is governed by
the time-dependent Hamiltonian of the form

(4.1) H(t) = H0 +Hc(t).

Here, H0 is the free Hamiltonian of the system and Hc(t) is the control Hamiltonian
(at time t) that represents the interaction of the system with the external field. In
the mathematically oriented literature, the control Hamiltonian is usually formally
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written as Hc(t) =
∑

m cm(t)Hm, where {cm(t)} are real-valued control functions
at time t and {Hm} are Hermitian operators through which the controls couple to
the system. In physical and chemical applications, the control Hamiltonian is often
given by

(4.2) Hc(t) = −ε(t)µ,

where µ is the dipole operator and ε(t) is the control field at time t. The Hamiltonian
of the form (4.2) adequately describes the interaction of an atomic or molecular
system with a laser electric field in the dipole approximation or the interaction of a
spin system with a time-dependent magnetic field. However, other forms for Hc(t)
can arise including those nonlinear in ε(t). For the control fields, we will use the
notation ε(·) ∈ K and cm(·) ∈ K, where K is the space of locally bounded, sufficiently
smooth, square integrable functions of time defined on some interval [0, T ], with T
being the target time for achieving the desired control outcome.

The Hilbert space H of a quantum system is spanned by the eigenstates of
the free Hamiltonian H0. Let T (H) be the space of trace-class operators on H. For
example, for an N -level quantum system, H = CN is the space of complex vectors
of length N and T (H) =MN is the space of N ×N complex matrices. The set of
admissible states of a quantum system, which are represented by density matrices on
the Hilbert space H, is denoted as D(H). Any density matrix ρ ∈ D(H) is a positive
operator of trace one, i.e., ρ ≥ 0 and Tr(ρ) = 1 [thus, D(H) ⊂ T (H)]. The density
matrix of a pure state satisfies Tr(ρ2) = 1 and can be expressed as ρ = |ψ〉〈ψ|,
where |ψ〉 is a normalized complex vector in H. Any quantum state which is not
pure can be represented as a statistical mixture of pure states and therefore is called
mixed; the density matrix of a mixed state satisfies Tr(ρ2) < 1. In the presence of
environmental interactions the states will be described using the density matrices ρ
as the state is often incoherent and hence is a mixed state.

The time evolution of a closed quantum system from t = 0 to t is given in the
Schrödinger picture by

(4.3) ρ(t) = U(t)ρ0U
†(t),

where ρ(t) is the density matrix of the system at time t, ρ0 = ρ(0) is the initial state,
and U(t) is the system’s unitary evolution operator [for an N -level quantum system,
U(t) is an N ×N unitary matrix]. If the state is initially pure: ρ0 = |ψ0〉〈ψ0|, it will
always remain pure under unitary evolution: ρ(t) = |ψ(t)〉〈ψ(t)|, where

(4.4) |ψ(t)〉 = U(t)|ψ0〉.

The evolution operator satisfies the Schrödinger equation:

(4.5)
d

dt
U(t) = − i

~
H(t)U(t), U(0) = I,
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where I is the identity operator on H. The corresponding evolution equation for
the density matrix (called the von Neumann equation) is

(4.6)
d

dt
ρ(t) = − i

~
[H(t), ρ(t)], ρ(0) = ρ0,

and the Schrödinger equation for a pure state is

(4.7)
d

dt
|ψ(t)〉 = − i

~
H(t)|ψ(t)〉, |ψ(0)〉 = |ψ0〉.

In practice, it is often necessary to take into account interactions between
quantum systems called as open quantum systems (e.g., between molecules in a
liquid or between electron spins and nuclear spins in a semiconductor material) .
We will return to the case of open quantum systems in section 4.5.

4.4 Quantum optimal control theory

4.4.1 Controllability of closed quantum systems

Before considering the design of a control or a control experiment, a basic issue
to address is whether in principle a control exists to meet the desired objective.
Assessing the system’s controllability is an important issue from both fundamental
and practical perspectives. A quantum system is called controllable in a set of
configurations, S = {ζ}, if for any pair of configurations ζ1 ∈ S and ζ2 ∈ S there
exists a control that can drive the system from the initial configuration ζ1 to the
final configuration ζ2 in a finite time T .1 Here, possible types of the configuration
ζ include the system’s state ρ, the expectation value Tr(ρΘ) of an observable (a
Hermitian operator) Θ, the evolution operator U , and the Kraus map Φ, with the
particular choice depending on the specific control problem.

Consider first the well studied issue of controllability of closed quantum sys-
tems with unitary dynamics [142, 143, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 175, 176, 177, 178, 179]. A closed quantum system is called kinematically
controllable in a set SK of states if for any pair of states ρ1 ∈ SK and ρ2 ∈ SK there
exists a unitary operator U , such that ρ2 = Uρ1U

†. Any two quantum states that
belong to the same kinematically controllable set SK are called kinematically equiv-
alent. As unitary evolution preserves the spectrum of a density matrix, two states ρ1

1More generally, the definition of controllability can be extended by considering the asymptotic
evolution in the limit T → ∞. For the sake of simplicity, we will consider here only finite-time
controllability.
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and ρ2 of a closed quantum system are kinematically equivalent if and only if they
have the same eigenvalues [171, 172]. Therefore, all quantum states that belong to
the same kinematically controllable set have the same density-matrix eigenvalues
(and, correspondingly, the same von Neumann entropy and purity [158]). For exam-
ple, all pure states belong to the same kinematically controllable set. However, any
pure state is not kinematically equivalent to any mixed state. For a closed quantum
system, all states on the system’s Hilbert space are separated into disconnected sets
of kinematically equivalent states.

It is also possible to consider controllability in the dynamic picture. Assume
that the Hamiltonian H(t) which governs the dynamics of a closed quantum system
through the Schrödinger equation (4.5) is a function of a set of time-dependent con-
trols: H(t) = H(c1(t), . . . , ck(t)). A closed quantum system is called dynamically
controllable in a set SD of states if for any pair of states ρ1 ∈ SD and ρ2 ∈ SD there
exist a finite time T and a set of controls {c1(·), . . . , ck(·)}, such that the solution
U(T ) of the Schrödinger equation (4.5) transforms ρ1 into ρ2: ρ2 = U(T )ρ1U

†(T ).
Since a closed system is controllable only within a set of kinematically equivalent
states, a dynamically controllable set of states SD is always a subset of the corre-
sponding kinematically controllable set SK. If the dynamically controllable set of
pure states coincides with its kinematically controllable counterpart (i.e., the set of
all pure states), the closed quantum system is called pure-state controllable. If for
any pair of kinematically equivalent states ρ1 and ρ2 there exists a set of controls
that drives ρ1 into ρ2 in finite time (i.e., if all dynamically controllable sets of states
coincide with their kinematically controllable counterparts), the closed system is
called density-matrix controllable.

It is also possible to consider controllability of closed quantum systems in the
set of unitary evolution operators. A closed quantum system is called evolution-
operator controllable if for any unitary operator W there exists a finite time T
and a set of controls {c1(·), . . . , ck(·)}, such that W = U(T ), where U(T ) is the
solution of the Schrödinger equation (4.5) with H(t) = H(c1(t), . . . , ck(t)). For an
N -level closed quantum system, a necessary and sufficient condition for evolution-
operator controllability is [143, 171, 172, 173] that the dynamical Lie group G of
the system (i.e., the Lie group generated by the system’s Hamiltonian) be U(N) [or
SU(N) for a traceless Hamiltonian]. It was also shown [171, 172, 173] that density-
matrix controllability is equivalent to evolution-operator controllability. For specific
classes of states, the requirements for controllability are weaker [165, 166, 167]. For
example, pure-state controllability requires that the system’s dynamical Lie group
G is transitive on the sphere S2N−1. For infinite-level quantum systems evolving on
non-compact Lie groups, such as those arising in quantum optics, the conditions for
controllability are more stringent [179, 180].
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4.4.2 Theoretical formulation of quantum optimal control
theory

In the majority of physical and chemical applications, the most effective way to
coherently control complex dynamical processes in quantum systems is via the co-
ordinated interaction between the system and electromagnetic field whose temporal
profile may be continuously altered throughout the control period. For a specified
control objective, and with restrictions imposed by many possible constraints, the
time-dependent field required to manipulate the system in a desired way can be
designed using Quantum Optimal Control Theory(QOCT )

The control theory rests on the fact that an objective function, which means
the actual purpose of the problem, can be described and so the formulation of
a quantum control problem should begin the definition of a quantitative control
objective.

Consider a coherently controlled N -level closed quantum system, with the
Hamiltonian

(4.8) H(t) = H0 − ε(t)µ

and the unitary evolution operator U(t) ∈ U(N) that obeys the Schrödinger equation
(4.5). In QOCT, the control objective for such a system can be a functional of the
set of evolution operators U(·) = {U(t) | t ∈ [0, T ]} (where T is the target time), as
well as of the control fields ε(·). The general class of control objective functionals
(also referred to as cost functionals) can be written as

(4.9) J [U(·), ε(·)] = F (U(T )) +

∫ T

0

G(U(t), ε(t))dt,

where F , also called as the kinematic objective function, is a continuously differen-
tiable function on U(N), and G is a continuously differentiable function on U(N)×R.
Usually, the first term in (3.2) represents the main physical goal, while the second
term is used to incorporate various constraints on the dynamics and control fields.

On the Hilbert sphere SH, the optimal control problem may be stated as

(4.10) Jopt = max
ε(·)

J [U(·), ε(·)],

subject to the dynamical constraint of the Schrödinger equation. The maximization
in Eq.(4.4.1) equivalent to minimization with a change of sign of the functional, but
does not alter the basic formalism. The cost functional of the form (3.2) is said to be

of the Bolza type. If only the term
∫ T

0
G(U(t), ε(t))dt is present, the cost functional

is said to be of the Lagrange type, whereas if only the term F (U(T )) is present, the
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functional is said to be of the Mayer type [204]. The choice of F (U(T )) depends on
the problem at hand and will be discussed in more detail.

The cost functional for a pure state subject to Schrödinger can be written as,

J̄ [ ψ(·), φ(·), ε(·)] = F (ψ(T )) +

∫ T

0

[
λL(ψ(t), ε(t))(4.11)

+ 〈φ†(t)|
(
− i

~
(H0 − ε(t) · µ)− d

dt

)
|ψ(t)〉

]
dt

where λ is a scalar weight and |φ(t)〉 is a Lagrange multiplier to satisfy the Schrödinger
and can be treated as an auxiliary state often called as costate.

A necessary condition for a solution of the optimization problem (4.4.1) subject
to the dynamical constraint (4.5) is that the first-order functional derivatives of the
objective functional J̃ [U(·), V (·), ε(·)] of Eq. (4.20) with respect to V (·), U(·), and
ε(·) are equal to zero. The resulting set of Euler-Lagrange(EL) equations is given
by

d

dt
U(t) = − i

~
H(t)U(t), U(0) = I,(4.12)

d

dt
V (t) = − i

~
H(t)V (t), V (T ) = ∇F (U(T )),(4.13)

∂

∂ε(t)
G(ε(t))− 2

~
Im
{

Tr
[
V †(t)µU(t)

]}
= 0,(4.14)

where ∇F (U(T )) is the gradient of F at U(T ) in U(N). Critical points of the
objective functional, which include optimal controls, can be obtained by solving this
set of equations.

Following the above, the EL equations, leads to an equation of motion for the
costate |φ(t)〉. Noting that H0 and µ in the bilinear system (4.1) are Hermitian and
based on the objective functional in (4.20) we get,

(4.15)
dφ(t)

dt
= − i

~
(H0 − ε(t) · µ)φ(t).

1. Exercise: Derive Eq. (4.15)...we may need to fill the proof

To solve the costate equation (4.15) we can use the fact that the matrix ele-
ments 〈ψ(t)|φ(t)〉 are constant of motion, i. e.,

d〈ψ(t)|φ(t)〉
dt

=
d 〈ψ(t)|
dt

|φ(t)〉+ 〈ψ(t)| d |φ(t)〉
dt

=
i

~
[〈ψ(t)| (H0 − µε(t)) |φ(t)〉 − 〈ψ(t)| (H0 − µε(t)) |φ(t)〉]

= 0.
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This implies that 〈ψ(t)|φ(t)〉 = 〈ψ(T )|φ(T )〉 and hence we can express the costate
equation in terms of state vector as,

(4.16) |φ(t)〉 = 〈ψ(T )|φ(T ) |ψ(t)〉〉.

An equivalent approach to solve the optimal controls is based on applying
Pontryagin Maximum Principle(PMP), which is,

Theorem 4.4.1 (Pontryagin) An optimal control ε̄(·) that solves

max
ε(·)

J [ψ(·), ε(·)]

satisfies ∂H
∂ε(t)

= 0 for a matrix φ(T ) = ψ(T )ψ†(t)φ(t) and scalar λ where at least one

of φ(T ), λ is nonzero.

where H is called as PMP-Hamiltonian or PMP-function and for a generic
optimal control problem as given in Eq. 4.9 and is defined as

H[U(t), V (t), ε(t)]G(ε(t))− 2Re

[
〈V (t),

i

~
H(t)U(t)〉

]
= G(ε(t)) +

2

~
Im
{

Tr
[
V †(t)H(t)U(t)

]}
,(4.17)

where 〈A,B〉 = Tr(A†B) is the Hilbert-Schmidt inner product. According to the
PMP, all solutions to the optimization problem (4.4.1) satisfy equations

(4.18)
dU(t)

dt
=

∂H

∂V (t)
,

dV (t)

dt
= − ∂H

∂U(t)
,

∂H

∂ε(t)
= 0, ∀t ∈ [0, T ],

with the boundary conditions U(0) = I, V (T ) = ∇F (U(T )). It is easy to see that
for the PMP function of the form (4.31), the conditions (4.32) produce Eqs. (4.22)–
(4.24). Satisfaction of the first-order condition δJ̃/δε(·) = 0 or, equivalently, ∂H/∂ε(t) =
0 (∀t ∈ [0, T ]) is a necessary but not sufficient condition for optimality of a control
ε(·). So-called Legendre conditions on the Hessian ∂2H/∂ε(t′)∂ε(t) are also re-
quired for optimality [204, 273]. The optimality criteria are discussed in Section to
be written.

For the pure state optimal control problem described in (4.20) which basically
describes a control on the Hilbert sphere SH the PMP Hamiltonian can be written
as,

H[ψ(t), φ(t), ε(t)] = λL(ψ(t), ε(t))− 〈φ(t),
i

~
H0ψ(t)〉+ ε(t)〈φ(t),

i

~
µψ(t)〉,



4.4. QUANTUM OPTIMAL CONTROL THEORY 43

and by using the costate solution in Eq. (4.16)

H[ψ(t), φ(t), ε(t)] = λL(ψ(t), ε(t))−〈ψ(t)ψ†(T )φ(T ),
i

~
H0ψ(t)〉+ε(t)〈ψ(t)ψ†(T )φ(T ),

i

~
µψ(t)〉.

Applying the Pontryagin theorem, i.e. maximizing the PMP-Hamiltonian leads
us to

∂H

∂ε(t)
= λ

∂L(ε(t))

∂ε(t)
− i

~
φ†(t)µψ(t) = 0, 0 ≤ t ≤ T.

4.4.3 Searching for optimal controls

To identify optimal controls that maximize an objective functional J (of the types
discussed in Section ??), it is convenient to define a functional J̃ that explicitly incor-
porates the dynamical constraint. For example, many QOCT studies [11, 130, 131]
considered pure-state evolution of a closed quantum system, for which the dynam-
ical constraint is satisfaction of Eq. (4.7). The corresponding objective functional
(e.g., for observable control) J̃ = J̃ [ψ(·), χ(·), ε(·)] often is taken to have the form

(4.19) J̃ = 〈ψ(T )|Θ|ψ(T )〉−
∫ T

0

α(t)ε2(t)dt−2Re

∫ T

0

〈χ(t)|
[
d

dt
+
i

~
H(t)

]
|ψ(t)〉dt.

Here, the first term represents the main control goal of maximizing the expectation
value of the target observable Θ at the final time T ; the second term is used to restrict
the fluence and shape of the control field, with α(t) being a weight function; the third
term includes an auxiliary state |χ(t)〉 that is a Lagrange multiplier employed to en-
force satisfaction of the Schrödinger equation for the pure state [Eq. (4.7)], and H(t)
is the Hamiltonian (4.8) that includes the time-dependent control term. More gen-
erally, satisfaction of the Schrödinger equation for the evolution operator of a closed
quantum system [Eq. (4.5)] can be used as the dynamical constraint for different
types of objectives, including evolution-operator, state, and observable control. The
corresponding general form of the objective functional J̃ = J̃ [U(·), V (·), ε(·)] is

(4.20) J̃ = F (U(T )) +

∫ T

0

G(ε(t))dt− 2Re

∫ T

0

Tr

{
V †(t)

[
d

dt
+
i

~
H(t)

]
U(t)

}
dt.

Here, an auxiliary operator V (t) is a Lagrange multiplier employed to enforce sat-
isfaction of Eq. (4.5), and, for the sake of simplicity, we assumed that G depends
only on the control field.

QOCT can be also formulated for open systems with non-unitary dynamics
[128, 251, 252, 253, 254, 255, 256, 257, 258]. For example, for a quantum system cou-
pled to a Markovian environment, the Liouville-von Neumann equation (4.45) must
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be satisfied. The corresponding objective functional (e.g., for observable control)
J̃ = J̃ [ρ(·), σ(·), ε(·)] has the form

(4.21) J̃ = Tr [ρ(T )Θ]−
∫ T

0

α(t)ε2(t)dt−
∫ T

0

Tr

{
σ†(t)

[
d

dt
+ iL

]
ρ(t)

}
dt.

Here, L is the Liouville super-operator (the generator of the dynamical semigroup),
and an auxiliary density matrix σ(t) is a Lagrange multiplier employed to enforce
satisfaction of Eq. (4.45). Extensions of QOCT to non-Markovian open-system
dynamics were also considered [256, 259, 257, 260].

Various modifications of the objective functionals (4.19), (4.20), and (4.21)
are possible. For example, modified objective functionals can comprise additional
spectral and fluence constraints on the control field [261, 262], take into account
nonlinear interactions with the control field [263, 264], deal with time-dependent and
time-averaged targets [258, 265, 266, 267], and include the final time as a free control
parameter [268, 269]. It is also possible to formulate QOCT with time minimization
as a control goal (time optimal control) [270, 271, 272]. As we mentioned earlier,
QOCT can be also extended to incorporate optimization of multiple objectives [242,
243, 244, 245].

A necessary condition for a solution of the optimization problem (4.4.1) subject
to the dynamical constraint (4.5) is that the first-order functional derivatives of the
objective functional J̃ [U(·), V (·), ε(·)] of Eq. (4.20) with respect to V (·), U(·), and
ε(·) are equal to zero. The resulting set of Euler-Lagrange equations is given by

d

dt
U(t) = − i

~
H(t)U(t), U(0) = I,(4.22)

d

dt
V (t) = − i

~
H(t)V (t), V (T ) = ∇F (U(T )),(4.23)

∂

∂ε(t)
G(ε(t))− 2

~
Im
{

Tr
[
V †(t)µU(t)

]}
= 0,(4.24)

where ∇F (U(T )) is the gradient of F at U(T ) in U(N). Critical points of the
objective functional, which include optimal controls, can be obtained by solving this
set of equations (various algorithms employed for numerical solution are discussed
below). In the special case of the objective functional J̃ [ψ(·), χ(·), ε(·)] of Eq. (4.19),
setting the first-order functional derivatives of J̃ with respect to χ(·), ψ(·), and ε(·)
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to zero results in the following Euler-Lagrange equations:

d

dt
|ψ(t)〉 = − i

~
H(t)|ψ(t)〉, |ψ(0)〉 = |ψ0〉,(4.25)

d

dt
|χ(t)〉 = − i

~
H(t)|χ(t)〉, |χ(T )〉 = Θ|ψ(T )〉,(4.26)

ε(t) = − 1

~α(t)
Im {〈χ(t)|µ|ψ(t)〉} .(4.27)

Analogously, in the special case of the objective functional J̃ [ρ(·), σ(·), ε(·)] of Eq. (4.21),
setting the first-order functional derivatives of J̃ with respect to σ(·), ρ(·), and ε(·)
to zero results in the following Euler-Lagrange equations:

d

dt
ρ(t) = −iLρ(t), ρ(0) = ρ0,(4.28)

d

dt
σ(t) = −iL†σ(t), σ(T ) = Θ,(4.29)

ε(t) = − 1

~α(t)
Im
{

Tr
[
σ†(t)µρ(t)

]}
.(4.30)

An equivalent method for deriving optimal control equations is based on ap-
plying the Pontryagin maximum principle (PMP) [249, 250, 273]. For a bilinear
control system of the form (4.5) evolving on the unitary group, the PMP function
(also referred to as the PMP-Hamiltonian) is defined as

H[U(t), V (t), ε(t)]G(ε(t))− 2Re

[
〈V (t),

i

~
H(t)U(t)〉

]
= G(ε(t)) +

2

~
Im
{

Tr
[
V †(t)H(t)U(t)

]}
,(4.31)

where 〈A,B〉 = Tr(A†B) is the Hilbert-Schmidt inner product. According to the
PMP, all solutions to the optimization problem (4.4.1) satisfy equations

(4.32)
dU(t)

dt
=

∂H

∂V (t)
,

dV (t)

dt
= − ∂H

∂U(t)
,

∂H

∂ε(t)
= 0, ∀t ∈ [0, T ],

with the boundary conditions U(0) = I, V (T ) = ∇F (U(T )). It is easy to see that
for the PMP function of the form (4.31), the conditions (4.32) produce Eqs. (4.22)–
(4.24). Satisfaction of the first-order condition δJ̃/δε(·) = 0 or, equivalently, ∂H/∂ε(t) =
0 (∀t ∈ [0, T ]) is a necessary but not sufficient condition for optimality of a control
ε(·). So-called Legendre conditions on the Hessian ∂2H/∂ε(t′)∂ε(t) are also required
for optimality [204, 273]. The optimality criteria are discussed in Section ??.
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4.4.3.1 Existence of optimal controls

An important issue is the existence of optimal control fields (i.e., maxima of the
objective functional) for realistic situations that involve practical constraints on the
applied laser fields. It is important to distinguish between the existence of an optimal
control field and controllability; in the former case, a field is designed, subject to
particular constraints, that guides the evolution of the system towards a specified
target until a maximum of the objective functional is reached, while in the latter
case, the exact coincidence between the attained evolution operator (or state) and
the target evolution operator (or state) is sought. The existence of optimal controls
for quantum systems was analyzed in a number of works. Peirce et al. [37] proved
the existence of optimal solutions for state control in a spatially bounded quantum
system that necessarily has spatially localized states and a discrete spectrum. Zhao
and Rice [144] extended this analysis to a system with both discrete and continuous
states and proved the existence of optimal controls over the evolution in the subspace
of discrete states. Demiralp and Rabitz [145] showed that, in general, there is a
denumerable infinity of solutions to a particular class of well-posed quantum control
problems; the solutions can be ordered in quality according to the achieved optimal
value of the objective functional. The existence of multiple control solutions has
important practical consequences, suggesting that there may be broad latitude in the
laboratory, even under strict experimental restrictions, for finding successful controls
for well-posed quantum objectives. The existence and properties of critical points
(including global extrema) of objective functionals for various types of quantum
control problems were further explored using the analysis of QCLs [208, 209, 210,
217, 218, 219, 220, 146, 221, 274] (see Section ??).

A number of optimization algorithms have been adapted or specially developed
for use in QOCT, including the conjugate gradient search method [39], the Krotov
method [206, 275, 276], monotonically convergent algorithms [277, 278, 279, 280,
259, 281, 282], non-iterative algorithms [283], the gradient ascent pulse engineering
(GRAPE) algorithm [284], a hybrid local/global algorithm [258], and homotopy-
based methods [285, 286, 287]. Faster convergence of iterative QOCT algorithms was
demonstrated using “mixing” strategies [288]. Also, the employment of propagation
toolkits [289, 290, 291] can greatly increase the efficiency of numerical optimizations.
Detailed discussions of the QOCT formalism and algorithms are available in the
literature [5, 130, 131, 11].

4.4.4 Applications of QOCT

In this section we first survey various applications of the QOCT and present an
example of the theory developed so far. The applications of QOCT to the open
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quantum systems will be discussed in the next section.

Originally, QOCT was developed to design optimal fields for manipulation of
molecular systems [36, 37, 38, 39, 40, 124, 125, 126, 127, 128, 129] and has been ap-
plied to a myriad of problems (e.g., rotational, vibrational, electronic, reactive, and
other processes) [5, 130, 11]. Some recent applications include, for example, control
of molecular isomerization [292, 293, 294, 295], control of electron ring currents in
chiral aromatic molecules [296], and control of heterogeneous electron transfer from
surface attached molecules into semiconductor band states [297]. Beyond molecules,
QOCT has been applied to various physical objectives including, for example, con-
trol of electron states in semiconductor quantum structures [298, 299, 300], control
of atom transport in optical lattices [301], control of Bose-Einstein condensate trans-
port in magnetic microtraps [302], control of a transition of ultracold atoms from
the superfluid phase to a Mott insulator state [303], control of coherent population
transfer in superconducting quantum interference devices [304], and control of the
local electromagnetic response of nanostructured materials [305].

Recently, there has been rapidly growing interest in applications of QOCT
to the field of quantum information sciences. One of the important problems in
this field is optimal protection of quantum systems against decoherence, as men-
tioned above. Applications of QOCT to quantum information processing also in-
clude optimal operation of quantum gates in closed systems [180, 205, 206, 250,
322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335] and in open
systems (i.e., in the presence of decoherence) [213, 336, 337, 338, 339, 340, 341,
342, 343, 344, 345, 346, 347, 348, 349, 350, 351], and optimal generation of entan-
glement [268, 269, 350, 352, 353, 354]. One particular area where QOCT methods
have proved to be especially useful is design of optimal sequences of radiofrequency
(RF) pulses for operation of quantum gates in systems of coupled nuclear spins in
a nuclear magnetic resonance (NMR) setup [284, 355, 356]. In a recent experi-
ment with trapped ion qubits, shaped pulses designed using QOCT were applied
to enact single-qubit gates with enhanced robustness to noise in the control field
[357]. Optimal control methods were also applied to the problem of storage and
retrieval of photonic states in atomic media, including both theoretical optimization
[358, 359, 360] and experimental tests [361, 362, 363].

Let us now consider an instructive example by applying the theory developed
so far developed to a molecular system. In one of the pioneering QOCT studies,
Kosloff et al. [39] considered two electronic states (ground and excited) of a model
molecular system, with the wave function (in the coordinate representation) of the
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form2

(4.33) ψ(r, t) = 〈r|ψ(t)〉 =

(
ψe(r, t)
ψg(r, t)

)
,

where ψg and ψe are the projections of the wave function on the ground and excited
state, respectively. The time evolution of the wave function is determined by the
Schrödinger equation:

(4.34) ~
∂

∂t

(
ψe(r, t)
ψg(r, t)

)
=

(
He(r) Hge(r, t)
H†ge(r, t) Hg(r)

)(
ψe(r, t)
ψg(r, t)

)
,

where Hi(r) = p2/(2m) + Vi(r) (i = g, e), p is the momentum operator, Vg(r) and
Ve(r) are the adiabatic potential energy surfaces for the ground and excited state,
respectively. The off-diagonal term Hge(r, t) represents the field-induced coupling
between the molecular states:

(4.35) Hge(r, t) = −µge(r)ε(t),

where µge(r) is the electric dipole operator and ε(t) is the time-dependent electric
field of the control laser pulse applied to the molecule.

The goal is to control a dissociation reaction in the presence of two distinct
exit channels on the ground potential energy surface. The corresponding objective
functional (including the dynamical constraint) is given by

(4.36) J̃ = 〈ψ(T )|P |ψ(T )〉 − λ
∫ T

0

ε2(t) t− 2<
∫ T

0

〈χ(t)|
(
∂

∂t
+

~
H

)
|ψ(t)〉 t,

The first term in (4.36) represents the main control goal, where P is the projection
operator on the state corresponding to the target exit channel (i.e., the part of the
wave function which is beyond the target saddle point on the ground-state surface
and is characterized by the outgoing momentum); the second term is used to manage
the fluence of the control field, with λ being a scalar weight factor; the third term
includes an auxiliary state |χ(t)〉 that is a Lagrange multiplier employed to enforce
satisfaction of the Schrödinger equation (H is the 2× 2 Hamiltonian matrix defined
by (4.34)). In order to find the control field that maximizes the objective, the first-
order functional derivatives of J̃ with respect to χ(·), ψ(·), and ε(·) are set to zero,
producing the following Euler-Lagrange equations:

~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, |ψ(0)〉 = |ψ0〉,(4.37)

~
∂

∂t
|χ(t)〉 = H|χ(t)〉, |χ(T )〉 = P |ψ(T )〉,(4.38)

ε(t) = − 1

~λ
={〈χg(t)|µge|ψe(t)〉+ 〈χe(t)|µge|ψg(t)〉} .(4.39)

2For the sake of notation consistency, the control problem is presented here slightly differently
than in the original work [39].
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An initial guess is selected for the control field (e.g., a pair of transform-limited pulses
with a time delay between them, as in pump-dump control), and equations (4.37)–
(4.39) are solved using an appropriate algorithm, as discussed in section 4.4.3 above.
This optimization procedure identifies a shaped control field εopt(·) that maximizes
photoinduced molecular dissociation into the target channel. Successful application
of QOCT to this model molecular system [39] demonstrated the benefits of optimally
tailoring the time-dependent laser field to achieve the desired dynamic outcome.

Example: Let us consider a more detailed problem of controlling a single
nuclear spin subjected to a static magnetic field along the z-axis and a time varying
radio frequency magnetic field along the x and y-axes. Since the electric and Mag-
netic fields are related via Maxwell equations, the controls are denoted as εx(t), εy(t)
instead of Bx(t), By(t). The dynamics of a spin are described using the Pauli-spin

operators, σx, σy and σz or with the spin vector ~σ = σxî+ σy ĵ + σzk̂.

The problem:Find the time-varying fields εx(t) and εy(t) that drive the system
to a specified final state ψf at time T using minimal energy. The dynamical equation
(Schrödinger equation) is

d

dt
|ψ(t)〉 =− i

~
~σ · ~ε(t)|ψ(t)〉

= − i
~

[σzBz + σxεx(t) + σyεy(t)]ψ(t)〉

Solution: First lets define the Lagrange for the problem which is now a function
of the two controls εx(t), εy(t) and is given as,

L(εx(t), εy(t)) = −1

2
(ε2
x(t) + ε2

y(t)).

Since the final state ψf is assumed to be pre-defined the cost function will now have
the form,

F (ψ(T )) = <〈ψf |ψ(t)〉
and ideally we want to reach the final state exactly within a global phase , we have
the condition

(4.40) maxF (ψ(T )) = 1.

Thus proceeding we get the cost functional J in the Lagrange formulation as,

J =
1

2

∫ T

0

ε2
x(t) + ε2

y(t) dt

and the PMP-Hamiltonian, which is a function of state ψ(t), costate φ(t) and control
~ε(t), is given as,

H(ψ(t), φ(t), ~ε(t)) =
1

2
(ε2
x(t) + ε2

y(t)) + 〈φ(t)| − i

~
[σzBz + σxεx(t) + σyεy(t)|ψ(t)〉.
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From the first Euler-Lagrange equation we have the dynamical equation for
the costate φ(t) as,

dφ†(t)

dt
= ∇ψ(t)H(ψ(t), φ(t), ε(t))

= − i
~
φ†(t) [σzBz + σxεx(t) + σyεy(t)]

or equivalently

dφ(t)

dt
=
i

~
[σzBz + σxεx(t) + σyεy(t)]φ(t).

Employing the second Euler-Lagrange equation or directly from the Pontraygin max-
imum principle we have the maximization of the PMP-Hamiltonian over the control
as,

∇~ε(t)H(ψ(t), φ(t), ~ε(t)) = 0

which leads to

εx(t) =
i

~
〈φ(t)|σx|ψ(t)〉εy(t) =

i

~
〈φ(t)|σy|ψ(t)〉

and further leads to the equations for the controls,

dεx(t)

dt
=
i

~
{
〈 d
dt
φ(t)|σx|ψ(t)〉+

〈
φ(t)|σx|

d

dt
ψ(t)〉}

dεy(t)

dt
=
i

~
{
〈 d
dt
φ(t)|σy|ψ(t)〉+ 〈 d

dt
φ(t)|σy|

d

dt
ψ(t)〉

}
Since the Pauli matrices obey the commutation rules [σi, σj] = iεijkσk where

εijk is called structure constants that determine the structure of the Lie-Algebra.Now

we can use the co-state equations, ˙φ(t) and rewrite the RHS of the above equations
as,

〈 d
dt
φ(t)|σy|ψ(t)〉 =

i

~
φ†(t) [σzBz + σxux(t) + σyuy(t)]σxψ(t)

〈φ(t)|σy|
d

dt
ψ(t)〉 =

i

~
φ†(t)σx [σzBz + σxux(t) + σyuy(t)]ψ(t)

and the control equations can be rewritten as,

ε̇x(t) = (
i

~
)2φ†(t)[σx, σy]uy(t)ψ(t) = − i

~

2

(φ†(t)σzψ(t)uy(t)− φ†(t)σyψ(t)Bz)

ε̇y(t) = (
i

~
)2φ†(t)[σy, σx]ux(t)ψ(t) =

i

~

2

(φ†(t)σzψ(t)ux(t)− φ†(t)σxψ(t)Bz).

Additional Conserved quantities: PMP-Hamiltonian Slides not clear
to me
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4.5 Open quantum systems

In practice, it is often necessary to take into account interactions between quantum
systems (e.g., between molecules in a liquid or between electron spins and nuclear
spins in a semiconductor material). If for a particular problem only one of the inter-
acting subsystems is of interest (now referred to as the system), all other subsystems
that surround it are collectively referred to as the environment. A quantum system
coupled to an environment is called open [154]. A molecule in a solution or an atom
coupled to the vacuum electromagnetic field are examples of open quantum systems.
The interaction with the environment typically results in a process of decoherence,
in which a coherent superposition state of an open quantum system is transformed
into a statistical mixture (decoherence is often accompanied by dissipation of the ini-
tial excitation, although in some situations pure dephasing is possible; see [154, 155]
for details). Generally, all quantum systems are open, however, whether or not
environmentally-induced processes are important depends on their rate relative to
the rate of the coherent evolution. From a practical perspective, the importance of
decoherence also depends on the control objective. In chemical applications such
as control over the yield of a reaction product, environmental effects may play a
significant role in the liquid phase where relaxation processes happen on the time
scale of the order of one picosecond [8, 9, 156, 157]. On the other hand, decoher-
ence induced by collisions in the gas phase can often be neglected (at least at low
pressures), as the time between collisions is much longer than the characteristic pe-
riod of vibronic dynamics controlled by femtosecond laser pulses [8]. In contrast,
in quantum information processing, an unprecedented level of control accuracy is
required to minimize quantum gate errors, and therefore decoherence needs to be
taken into account for practically all physical realizations [158].

The state of an open quantum system is described by the reduced density ma-
trix ρ = Trenv(ρtot), where ρtot represents the state of the system and environment
taken together, and Trenv denotes the trace over the environment degrees of freedom.
There are many models of open-system dynamics depending on the type of environ-
ment and character of the system-environment coupling [154, 155]. If the system
and environment are initially uncoupled, ρtot(0) = ρ(0) ⊗ ρenv, then the evolution
of the system’s reduced density matrix from t = 0 to t is described by a completely
positive, trace preserving map Φt:

(4.41) ρ(t) = Φtρ0,

where ρ0 = ρ(0). A linear map Φ : T (H) → T (H) is called completely positive if
the map Φ ⊗ Il : T (H) ⊗Ml → T (H) ⊗Ml (where Il is the identity map in Ml)
is positive for any l ∈ N. A map Φ is called trace preserving if Tr(Φρ) = Tr(ρ) for
any ρ ∈ T (H). The map (4.41) can be defined for any time t ≥ 0, and the entire
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time evolution of the open quantum system is described by a one-parameter family
{Φt | t ≥ 0} of dynamical maps (where Φ0 is the identity map I).

Any completely positive, trace-preserving map has the Kraus operator-sum
representation (OSR) [159, 160, 161]:

(4.42) ρ(t) = Φtρ0 =
n∑
j=1

Kj(t)ρ0K
†
j (t),

where {Kj} are the Kraus operators (N ×N complex matrices for an N -level quan-
tum system). The trace preservation is ensured by the condition

(4.43)
n∑
j=1

K†j (t)Kj(t) = I.

Here, n ∈ N is the number of Kraus operators. We will refer to completely posi-
tive, trace-preserving maps simply as Kraus maps. Unitary transformations form
a particular subset of Kraus maps corresponding to n = 1. There exist infinitely
many OSRs (with different sets of Kraus operators) for the same Kraus map. For
any Kraus map for an N -level quantum system, there always exists an OSR with a
set of n ≤ N2 Kraus operators [161].

While the Kraus-map description of open-system dynamics is very general, it
is often not the most convenient one for numerical calculations. With additional
assumptions, various types of quantum master equations can be derived from the
Kraus OSR [154, 155]. In particular, for a Markovian environment (i.e., when the
memory time for the environment is zero), the set of Kraus maps {Φt | t ≥ 0} is a
semigroup, which means that any two maps in the set satisfy the condition [154]

(4.44) Φt1Φt2 = Φt1+t2 , t1, t2 ≥ 0.

In this situation, the dynamics of an open quantum system is described by the
quantum master equation of the form [154]

(4.45)
d

dt
ρ(t) = −iLρ(t),

where the linear map L (also referred to as the Liouville super-operator) is the
generator of the dynamical semigroup, i.e., Φt = exp(−iLt). The evolution equation
of the form (4.45) is often referred to as the Liouville-von Neumann equation. For
an N -level quantum system coupled to a Markovian environment, the most general
form of the map L can be constructed, resulting in the quantum master equation of
the Lindblad type [154, 155, 162]:

(4.46)
d

dt
ρ(t) = − i

~
[H(t), ρ(t)] +

N2−1∑
i=1

γi

[
Liρ(t)L†i −

1

2
L†iLiρ(t)− 1

2
ρ(t)L†iLi

]
.
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Here, {γi} are non-negative constants and {Li} are the Lindblad operators (N ×N
complex matrices) that form (together with the identity operator) an orthonormal
operator basis on H. By convention, {Li} are traceless. The first term in Eq. (4.46)
represents the unitary part of the dynamics governed by the Hamiltonian H and
the second (Lindblad) term represents the non-unitary effect of coupling to the
environment. The constants {γi} are given in terms of certain correlation functions
of the environment and play the role of relaxation rates for different decay modes of
the open system [154].

4.5.1 Applications of QOCT for open quantum systems

In the context of open-system dynamics in the presence of coupling to a Markovian
environment, QOCT applications include control of unimolecular dissociation reac-
tions in the collisional regime [128], laser cooling of molecular internal degrees of free-
dom coupled to a bath [252, 253, 306], control of vibrational wave packets in a model
molecular system coupled to an oscillator bath at finite temperatures in the weak-
field (perturbative) regime [251, 307], creation of a specified vibronic state, popula-
tion inversion, wave packet shaping in the presence of dissipation in the strong-field
regime [255], control of ultrafast electron transfer in donor-acceptor systems where
the reaction coordinate is coupled to a reservoir of other coordinates [308], control of
photodesorption of NO molecules from a metal surface in the presence of strong dissi-
pation [309], control of excitation of intramolecular and molecule-surface vibrational
modes of CO molecules adsorbed on a metal surface in the presence of dissipation to
baths of substrate electrons and phonons [310, 258], and control of current flow pat-
terns through molecular wires coupled to leads [311]. Also, QOCT was actively ap-
plied to the problem of protection of open quantum systems against environmentally-
induced decoherence [216, 257, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321].
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Chapter 5

Quantum control landscapes

5.1 Introduction

An important practical goal of quantum control is the discovery of optimal solu-
tions for manipulating quantum phenomena. Early studies [37, 145, 144] described
conditions under which optimal solutions exist, but did not explore the complexity
of finding them. Underlying the search for optimal controls is the landscape which
specifies the physical objective as a function of the control variables. Analysis of
quantum control landscapes [147] can not only establish the existence of optimal con-
trol solutions and determine their types (e.g., global versus local maxima and true
maxima versus saddle points), but also deal with establishing necessary conditions
for convergence of optimization algorithms to global maxima along with bounds on
the scaling of convergence effort. Surprisingly, these properties are independent of
details of a particular Hamiltonian (provided that the system is controllable), which
makes the results of landscape analysis applicable across a wide range of controlled
quantum phenomena.

The notion of controlling quantum systems seems inherently problematic on
several counts. First, the extreme sensitivity of quantum systems to environmental
interactions would appear to place limits on the maximal achievable control fidelity.
Second, from a numerical perspective, given the considerable cost of propagating
the Schrodinger equation, unless the search space for optimal controls has partic-
ularly simple properties, it would appear impossible to locate controls for all but
the smallest quantum systems in reasonable time. However, once the methods of
optimal control began to be applied to molecular systems (thanks to remarkable
advances in laser pulse shaping technology) it rapidly became clear that quantum
control was not an ill-fated concept, but rather, that controlling quantum systems
was surprisingly easy. In the laboratory, this conclusion was particularly apparent in

55
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the case of so-called adaptive learning control of quantum dynamics, wherein learn-
ing (i.e., typically genetic) algorithms are applied to search the space of laser control
parameters for the maximization of the expectation value of a quantum observable.
This search space is high-dimensional, normally suggesting that it should be replete
with local optima and other unfavorable features that would trap unsophisticated
search algorithms, especially in the presence of environmental decoherence. The re-
peated successes of quantum optimal control experiments and simulations indicated
that the so-called ”curse of dimensionality”, common in the theory of optimization
in high-dimensional spaces, was not prohibitive here.

Figure 5.1: A control landscape is defined as the map between the time-dependent
control Hamiltonian and associated values of the control cost functional. The en-
try point into their study is (a) the controllability of the quantum system, which
allows search algorithms to freely traverse the landscape. Quantum control land-
scape features can be conveniently subdivided into those pertaining to (b) critical
topology, i.e., the maxima, minima and saddle points of the landscape, and (c)
landscape geometry, namely the characteristic local structures encountered while
climbing toward the global optimum. Study of the geometry of quantum control
landscapes reveals (d) the existence of multiple control solutions corresponding to
any given objective function value. The topology and geometry of quantum control
landscapes together determine (e) the search complexity of the control problems,
i.e. the scaling of the effort required to locate optimal controls. An ultimate goal in
the study of quantum control landscapes is the design of global search algorithms
that attain lower bounds on this search complexity. Such algorithms may be applied
to either of the two major classes of quantum system manipulation problems, (f)
control of quantum observables and (g) control of quantum dynamical transforma-
tions (i.e., unitary propagators). An overarching conclusion pertaining to both these
types of landscapes is that they contain no suboptimal traps, which has broad-scale
implications for both the experimental and computational feasibility of quantum
control.

This attractive circumstance for quantum control rests on the mathematical
underpinnings of quantum theory being surprisingly simple, owing to the linearity
of quantum mechanics and the unitarity of the accompanying transformations. Al-
though quantum systems can be highly sensitive to environmental perturbations,
the rules governing their dynamics are in many ways simpler than those governing
classical dynamics. Furthermore, the presence of an environment, rather than being
an impediment, may under the right conditions aid the control process. Recent
work has aimed to understand the precise mathematical properties of quantum me-
chanics are responsible for the surprising simplicity with which quantum phenomena
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can be controlled. Analytical, numerical and experimental treatments of the prob-
lem have been explored. In order to enable the systematic study of these features,
the notion of a quantum control landscape, defined as the map between the space
of time-dependent controls and associated values of the objective functional, was
introduced (Figs. 5.1, ??).

From an analytical perspective, it was recently found that for several classes
of low-dimensional problems, it is possible to exactly solve for quantum optimal
controls, without any need for numerical search. By contrast, for the analogous
classical problems, analytical solutions do not exist. Of course, analytical solutions
are still only possible for special small systems; however, beyond this, it has become
clear that the numerical or experimental search for optimal controls is often easier
for quantum systems than for classical systems. In this regard, the topology of the
search space is of fundamental importance. Evidence suggests that the landscapes
for both observable maximization and control of dynamical transformations have
simpler topological properties for quantum versus classical systems, contributing
to rapid convergence of numerical or experimental searches for effective controls.
Moreover, besides the simplicity of locating quantum controls, it has been observed
that the controls themselves have remarkably simple functional properties, in some
cases enabling a direct interpretation of the mechanisms involved in steering about
the dynamics.

The ease of locating optimal quantum controls, and the comparatively simple
structure of these controls, have pervasive implications for a wide range of quantum
technologies. The study of quantum control landscapes is motivated by the prac-
tical goals of achieving higher objective function yields and designing control fields
with desired properties, but in order to attain these goals, it is necessary to embrace
the mathematical framework that underlies the remarkable properties of these land-
scapes. The origin of these counterintuitive properties, and their differences with
respect to classical control, constitute the primary subject of this review.

subsectionControl landscape definition and critical points

Properties of the search space associated with Mayer-type cost functionals
play a fundamental role in the ability to identify optimal controls. To characterize
these properties, it is convenient to express the cost functional in a form where the
dynamical constraints are implicitly satisfied. Consider a control problem with a
fixed target time T for a closed quantum system with unitary evolution. Denote
by VT : ε(·) 7→ U(T ) the endpoint map from the space of control functions to the
space of unitary evolution operators, induced by the Schrödinger equation (4.5), so
that U(T ) = VT (ε(·)). A Mayer-type cost functional F (U(T )) itself describes a map
F from the space of evolution operators to the space of real-valued costs. Thus
the composition of these maps, J = F ◦ VT : K → R, is a map from the space of
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control functions to the space of real-valued costs. This map generates the functional
J [ε(·)] = F (VT (ε(·))). We will refer to the functional J [ε(·)] as the control landscape.
The optimal control problem may then be expressed as the unconstrained search for

(5.1) Jopt = max
ε(·)

J [ε(·)].

The topology of the control landscape (i.e., the character of its critical points,
including local and global extrema) determines whether local search algorithms
will converge to globally optimal solutions to the control problem [148]. Stud-
ies of quantum control landscape topology are presently an active research area
[147, 208, 209, 210, 217, 219, 220, 146, 221, 169, 627].

The critical points (extrema) of the landscape are controls, at which the first-
order functional derivative of J [ε(·)] with respect to the control field is zero for all
time, i.e.,

(5.2)
δJ [ε(·)]
δε(t)

= 0, ∀t ∈ [0, T ].

The critical manifold M of the control landscape is the collection of all critical
points:

(5.3) M = {ε(·) | δJ/δε(t) = 0, ∀t ∈ [0, T ]} .

A central concept in landscape topology is the classification of a critical point as
regular or singular [628, 629]. Most generally, a critical point of J [ε(·)] is regular if
the map VT is locally surjective in its vicinity, i.e., if for any local increment δU(T )
in the evolution operator there exists an increment δε(·) in the control function such
that VT (ε(·) + δε(·)) = VT (ε(·)) + δU(T ). This condition is equivalent to requir-
ing that the elements µij(t) of the time-dependent dipole-operator matrix (in the
Heisenberg picture) form a set of N2 linearly independent functions of time [210].
In its turn, this condition is satisfied for all non-constant admissible controls if and
only if the quantum system is evolution-operator controllable [143, 210]. Note that
for landscapes of some particular physical objectives the conditions for regularity of
the critical points can be less stringent. For example, in the important special case
of state-transition control, a critical point is regular if the matrix elements µij(t)
contain a set of just 2N − 1 linearly independent functions of time. This condition
is satisfied for all non-constant admissible controls if and only if the quantum sys-
tem is pure-state controllable (which is a weaker condition than evolution-operator
controllability, as discussed in section ??).

A critical point of J [ε(·)] is singular if the map VT is not locally surjective in
the point’s vicinity. Using the chain rule, one obtains:

(5.4)
δJ

δε(t)
=

〈
∇F (U(T )),

δU(T )

δε(t)

〉
,
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where ∇F (U(T )) is the gradient of F at U(T ), δU(T )/δε(t) is the first-order func-
tional derivative of U(T ) with respect to the control field, and 〈A,B〉 = (A†B) is
the Hilbert-Schmidt inner product. From (5.4), if a critical point of J is regular,
∇F (U(T )) must be zero. A critical point is called kinematic if ∇F (U(T )) = 0 and
non-kinematic if ∇F (U(T )) 6= 0. Thus, all regular critical points are kinematic. A
singular critical point may be either kinematic or non-kinematic; in the latter case,
δJ/δε(t) = 0 whereas ∇F (U(T )) 6= 0 [629]. On quantum control landscapes, the
measure of regular critical points appears to be much greater than that of singular
ones [629]. Therefore attention has been focused on the characterization of regular
critical points, and several important results have been obtained [147]. Nevertheless,
singular critical points on quantum control landscapes have been recently studied
theoretically [629] and demonstrated experimentally [630].

The condition for kinematic critical points, ∇F (U(T )) = 0, can be cast in an
explicit form for various types of quantum control problems. For evolution-operator
control with the objective functional J = F1(U(T )) of (??), this condition becomes
[208, 209]

(5.5) W †U(T ) = U †(T )W,

i.e., W †U(T ) is required to be a Hermitian operator. It was shown [208, 209]
that this condition implies W †U(T ) = Y †(−Im ⊕ IN−m)Y , where Y is an arbi-
trary unitary transformation and m = 0, 1, . . . , N . There are N + 1 distinct crit-
ical submanifolds labeled by m, with corresponding critical values of J given by
Jm = 1 − (2m/N). The global optima corresponding to m = 0 and m = N (with
J0 = 1 and JN = −1, respectively) are isolated points, while local extrema corre-
sponding to m = 1, 2, . . . , N − 1 are smooth, compact, Grassmannian submanifolds
embedded in U(N). It can be shown that all regular local extrema are saddle-point
regions [209].

For observable control with the objective functional J = F3(U(T )) of (??), the
condition for a kinematic critical point becomes [217, 146, 169]

(5.6) [U(T )ρ0U
†(T ),Θ] = 0,

i.e., the density matrix at the final time is required to commute with the target
observable operator. This condition was studied in the context of optimization of
Lagrange-type cost functionals with an endpoint constraint [627, 631, 632] as well as
in the context of regular critical points for Mayer-type cost functionals [217, 169]. Let
R and S denote unitary matrices that diagonalize ρ0 and Θ, respectively, and define
Ũ(T ) = S†U(T )R. The condition (5.6) that ρ(T ) and Θ commute is equivalent to
the condition that the matrix Ũ(T ) is in the double cosetMπ of some permutation
matrix Pπ [219]:

(5.7) Ũ(T ) ∈Mπ = U(n)PπU(m).
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Here, U(n) is the product group U(n1) × · · · × U(nr), where U(nl) corresponds
to the lth eigenvalue of ρ0 with nl-fold degeneracy, and U(m) is the product group
U(m1)×· · ·×U(ms), where U(ml) corresponds to the lth eigenvalue of Θ with ml-fold
degeneracy. Thus, each critical submanifold Mπ corresponds to a particular choice
of the permutation π. All permutations on N indices form the symmetric group
SN , and the entire critical manifoldM is given byM =

⋃
π∈SN

Mπ. The structure
of M depends on any degeneracies in the spectra of ρ0 and Θ. When both ρ0 and
Θ are fully nondegenerate, then U(n) = U(m) = [U(1)]N , and M consists of N !
disjoint N -dimensional tori, labeled by the permutation matrices. The occurrence
of degeneracies in the spectra of ρ0 and Θ will merge two or more tori together,
thereby reducing the number of disjoint critical submanifolds and increasing their
dimensions [219].

5.1.1 Optimality of control solutions

Satisfaction of the condition (5.2) for a critical point is a necessary but not sufficient
condition for optimality of a control [204, 249]. For Mayer-type cost functionals, a
sufficient condition for optimality is negative semidefiniteness of the Hessian of J ,
which is defined as

(5.8) H(t, t′)
δ2J

δε(t′)δε(t)
.

The characteristics of critical points (in particular, the presence or absence of local
optima) are important for the convergence properties of search algorithms [147]. To
classify critical points as global maxima and minima, local maxima and minima,
and saddle points, one examines the second-order variation in J for an arbitrary
control variation δε(·), which for Mayer-type functionals can be written as

(5.9) δ2J = QF (δU(T ), δU(T )) + 〈∇F (U(T )), δ2U(T )〉,

where δU(T ) and δ2U(T ) are the first- and second-order variations, respectively, of
U(T ) caused by a control variation δε(·), and QF is the Hessian quadratic form of
F (U). Assuming that the critical point ε(·) is regular, one obtains:

(5.10) δ2J = QF (δU(T ), δU(T )).

Explicit expressions for the Hessian and/or Hessian quadratic form were obtained
for evolution-operator control [208, 209, 210] and observable control [218, 148].

The optimality of regular critical points can be determined by inspecting the
number of positive, negative and null eigenvalues of the Hessian (or, equivalently,
the coefficients of the Hessian quadratic form when written in a diagonal basis).
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An issue of special interest is to determine whether any of the regular critical
points are local maxima (frequently referred to as local traps due to their abil-
ity to halt searches guided by gradient algorithms before reaching the global maxi-
mum). Detailed analyses for evolution-operator control and observable control reveal
[147, 208, 209, 210, 218, 148] that all regular optima are global and the remainder
of regular critical points (i.e., except for the global maximum and global mini-
mum) are saddles. This discovery means that no local traps exist in the control
landscapes of controllable closed quantum systems. The same result was also ob-
tained for observable-control landscapes of controllable open quantum systems with
Kraus-map dynamics [274]. Due attention still needs to be given to consideration
of singular critical points, although numerical evidence suggests that their effect on
optimization is likely insignificant [629].

5.1.2 Pareto optimality for multi-objective control

Many practical quantum control problems seek to optimize multiple, often compet-
ing, objectives. In such situations the usual notion of optimality is replaced by that
of Pareto optimality. The Pareto front of a multi-objective control problem is the
set of all controls such that all other controls have a lower value for at least one of
the objectives [246, 247, 248]. The analysis of the Pareto front reveals the nature
of conflicts and tradeoffs between different control objectives. The structure of the
landscape for multi-observable control is of interest and follows directly from that
of single-observable control [244]. Of particular relevance to many chemical and
physical applications is the problem of simultaneous maximization of the expecta-
tion values of multiple observables. Such simultaneous maximization is possible if
the intersection

⋂
kM

(max)
k (whereM(max)

k is the maximum submanifold for the kth
observable) is nonempty and a point in the intersection can be reached under some

control ε(·); in this regard, the dimension of the intersection manifold
⋂
kM

(max)
k

has been analyzed [245]. It has been shown that the common QOCT technique of
running many independent maximizations of a cost functional like (??) (using dif-
ferent weight coefficients {αk}) is incapable of sampling many regions of the Pareto
front [245]. Alternative methods for Pareto front sampling are discussed further
below.

5.1.3 Landscape exploration via homotopy trajectory con-
trol

The absence of local traps in landscapes for observable control and evolution-operator
control with Mayer-type cost functionals has important implications for the design
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of optimization algorithms. Many practical applications require algorithms capable
of searching quantum control landscapes for optimal solutions that satisfy addi-
tional criteria, such as minimization of the field fluence or maximization of the
robustness to laser noise. So-called homotopy trajectory control algorithms (in par-
ticular, diffeomorphic modulation under observable-response-preserving homotopy,
or D-MORPH) [285, 286, 287] can follow paths to the global maximum of a Mayer-
type cost functional, exploiting the trap-free nature of the control landscape, while
locally optimizing auxiliary costs. The essential prerequisite for successful use of
these algorithms is the existence of a connected path between the initial and target
controls. Homotopy trajectory control is closely related to the notion of a level set
which is defined as the collection of controls that all produce the same value of the
cost functional J . Theoretical analysis [147, 286, 287] predicts that for controllable
quantum systems each level set is a continuous manifold. A homotopy trajectory
algorithm is able to move on such a manifold exploring different control solutions
that result in the same value of the cost functional, but may differ in other prop-
erties (e.g., the field fluence or robustness). A version of the D-MORPH algorithm
was also developed for evolution-operator control of closed quantum systems; it was
able to identify optimal controls generating a target unitary transformation up to
machine precision [328].

Homotopy trajectory algorithms are also very useful for exploring quantum
control landscapes for multiple objectives. For example, in order to track paths in
the space of expectation values of multiple observables while locally minimizing a
Lagrange-type cost, multi-observable trajectory control algorithms were developed
[244]. Such algorithms are generally applicable to the treatment of multi-objective
quantum control problems (Pareto quantum optimal control) [245]. They can tra-
verse the Pareto front to identify admissible tradeoffs in optimization of multiple
control objectives (e.g., maximization of multiple observable expectation values).
This method can continuously sample the Pareto front during the course of one op-
timization run [245] and thus can be more efficient than the use of standard QOCT
with cost functionals of the form (??). Also, the D-MORPH algorithm was recently
extended to handle optimal control problems involving multiple quantum systems
and multiple objectives [?].

5.1.4 Practical importance of control landscape analysis

The absence of local traps in control landscapes of controllable quantum systems
has very important implications for the feasibility of AFC experiments (see sec-
tion ??). The relationship between the quantum control landscape structure and
optimization complexity of algorithms used in AFC has been the subject of recent
theoretical analyses [147, 149, 150, 151]. Results of these studies support the vast
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empirical evidence [148] indicating that the favorable landscape topology strongly
correlates with fast mean convergence times to the global optimum. The trap-free
control landscape topology also ensures convergence of gradient-based optimization
algorithms to the global maximum. These algorithms can be used to search for op-
timal solutions to a variety of quantum control problems. In addition to theoretical
studies (mostly using QOCT), gradient algorithms are also applicable in quantum
control experiments [152], provided that measurement of the gradient is sufficiently
robust to laser and detection noise. The use of deterministic algorithms in AFC
experiments is discussed in more detail in section ??.

5.1.5 Experimental observation of quantum control land-
scapes

Significant efforts have been recently devoted to experimental observation of quan-
tum control landscapes, aiming both at testing the predictions of the theoretical
analysis and at obtaining a better understanding of control mechanisms. Roslund
et al. [634] observed quantum control level sets for maximization of non-resonant
two-photon absorption in a molecule and second harmonic generation (SHG) in a
nonlinear crystal and found them to be continuous manifolds (closed surfaces) in
the control landscape. A diverse family of control mechanisms was encountered, as
each of the multiple control fields forming a level set preserves the observable value
by exciting a distinct pattern of constructive and destructive quantum interferences.

Wollenhaupt, Baumert, and co-workers [635, 636] used parameterized pulse
shapes to reduce the dimensionality of the optimization problem (maximization of
the Autler-Townes contrast in strong-field ionization of potassium atoms) and ob-
served the corresponding two-dimensional quantum control landscape. In order to
better understand the performance of AFC, the evolution of different optimization
procedures was visualized by means of trajectories on the surface of the measured
control landscape. Marquetand et al. [637] observed a two-dimensional quantum
control landscape (for maximization of the retinal photoisomerization yield in bac-
teriorhodopsin) and used it to elucidate the properties of molecular wave-packet
evolution on an excited potential energy surface.

The theoretical analysis of control landscape topology has been carried out
with no constraints placed on the controls (see section 5.1). A main conclusion from
these studies is the inherent lack of local traps on quantum control landscapes un-
der normal circumstances. Recently, Roslund and Rabitz [?] experimentally demon-
strated the trap-free monotonic character of control landscapes for optimization of
frequency unfiltered and filtered SHG. For unfiltered SHG, the landscape was ran-
domly sampled and interpolation of the data was found to be devoid of traps up to
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the level of data noise. In the case of narrow-band-filtered SHG, trajectories taken
on the landscape revealed the absence of traps, although a rich local structure was
observed on the landscape in this case. Despite the inherent trap-free nature of the
landscapes, significant constraints on the controls can distort and/or isolate por-
tions of the erstwhile trap-free landscape to produce apparent (i.e., false) traps [?].
Such artificial structure arising from the forced sampling of the landscape has been
seen in some experimental studies [635, 636, 637], in which the number of control
variables was purposely reduced.
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Acta B: At. Spectrosc. 58, 1109–1124 (2003).

[487] A. Bartelt, A. Lindinger, C. Lupulescu, Š. Vajda, and L. Wöste, Phys. Chem.
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[622] H. Ibrahim, M. Héjjas, M. Fushitani, and N. Schwentner, J. Phys. Chem. A
113, 7439–7450 (2009).

[623] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786–788 (1999).

[624] T. Feurer, J. C. Vaughan, and K. A. Nelson, Science 299, 374–377 (2003).

[625] R. Fanciulli, A. M. Weiner, M. M. Dignam, D. Meinhold, and K. Leo, Phys.
Rev. B 71, 153304 (2005).

[626] B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, J. Chem. Phys.
130, 064705 (2009).
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