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Elucidating the fitness measures optimized during the evolution of complex biological systems is a
major challenge in evolutionary theory. We present experimental evidence and an analytical framework
demonstrating how biochemical networks exploit optimal control strategies in their evolutionary dynam-
ics. Optimal control theory explains a striking pattern of extremization in the redox potentials of electron
transport proteins, assuming only that their fitness measure is a control objective functional with bounded
controls.
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Evolution is guided by the optimization of fitness mea-
sures that balance functionally beneficial properties. In
modern theories of evolutionary dynamics, such as the
quasispecies model [1] and variants thereof, the fitness
measure of a biological system plays a role analogous to
that of the free energy of a mechanical system. The dy-
namics of the system, embodied through mutations, seeks
to optimize this measure. Recently, with advances in the
understanding of molecular biophysics, increasing atten-
tion has been paid to characterizing the fitness measures
underlying the evolution of proteins. For example, simula-
tions of protein sequence evolution have confirmed that
protein cores evolve almost universally to maximize the
free energy gap between the folded and denatured states
[2]. However, for functional properties of proteins and
protein networks, the appropriate biological fitness mea-
sures are not so clear [3]. A current challenge in evolu-
tionary theory is to identify how the fitness measures of
complex biological systems depend on the physical prop-
erties of their constituent proteins.

In the hierarchical evolution of protein networks, bio-
logical self-organization [4] influences the dynamics that
occur on shorter time scales. Although most theories of
evolutionary dynamics have modeled evolution as a dy-
namical system seeking to optimize a potential or free
energy, multi-time-scale evolution of protein networks
may be modeled within a broader framework as a control
problem. Optimal control (OC) theory is generally con-
cerned with the determination of the time-dependent func-
tional form of the Hamiltonian of a controlled dynamical
system that maximizes a desired objective function [5]. An
important difference between a dynamical system and a
control system is that the latter distinguishes between the
free dynamics of the system and the dynamics regulated by
controls. In the present case, these controls can take the
form of functional protein properties.

The evolution of a biological system may be modeled as
a control system if the regulatory functional properties of
its constituent proteins coevolve with the network’s overall
function. Should the evolutionary dynamics of such a
system demonstrate features indicative of optimal controls,

this would constitute evidence that the system’s evolution
has attained a sophisticated level of self-organization
amounting to the solution of an OC problem. Here, we
show that application of this theory to active site mutations
in an enzyme network of central importance for metabo-
lism—the electron transport chain [6]—indicates that the
redox potentials of electron transport proteins are control-
ling the evolutionary dynamics of this network in an opti-
mal fashion, providing insight into the self-organization of
this system.

The mitochondrial electron transport chain (ETC) re-
moves electrons from the high-energy electron donor
NADH and passes them to the electron acceptor O2

through a series of redox reactions involving electron
transport proteins. These reactions are coupled to the gen-
eration of a proton concentration gradient across the mi-
tochondrial inner membrane, which is ultimately used to
produce adenosine triphosphate (ATP). Our prior work
[7,8] pursued a strategy of examining ‘‘evolution in re-
verse’’ with the four-helix bundle ETC hemoprotein cyto-
chrome b562. Starting with the evolved protein, variants
with replacements at amino acids near the active site heme
were created and examined for redox function. We found
two general results. First, within this conserved protein
architecture, a range of variation in redox potential "0 of
about 160 mV could be obtained within two rounds of
(reverse) evolution, involving only four residues.
Statistical analysis based on Chebyshev’s theorem indi-
cates that this range represents, with >75% confidence,
the total range accessible through mutations at these posi-
tions. Second, the wild-type redox potential was not found
to be at the middle of the chemically accessible range of
reduction potentials [7,8]. Instead, wt b562 exhibits a redox
potential ("0 � 167 mV) at the extreme of the chemically
accessible range (Fig. 1). More generally, artificial muta-
tions on a variety of electron transport proteins of various
folds and modes of chemical ligation induce redox poten-
tial changes that span ranges between 100–200 mV
(Fig. 1), typically around 150 mV [9–11]. Moreover, it is
possible to sample the majority of the chemically acces-
sible range through a small number of mutations in the
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vicinity of the active site, with only minimal concomitant
changes to the structure of the scaffold [8].

Most importantly, in nearly every case, these artificial
mutations push the redox potential in one direction from
the wild-type value (Fig. 1), indicating that this value
represents an extremum. In proteins where a few mutations
push the potential in the opposite direction (e.g.,
Azotobacter vinelandii Ferredoxin and Rubredoxin) it is
nonetheless clear that mutation-induced potential changes
are strongly biased statistically in one direction from the
wild-type potential. Maximum likelihood estimation
(MLE) of the underlying redox potential distributions
(see [12]) quantifies this conjecture. For instance, in the
case of cytochrome b562, the likelihood that the distribution
of redox potentials is unbiased is less than 10�8% (Fig. 1).

This striking observation begs an evolutionary explana-
tion. There is no obvious evolutionary advantage to the
redox potentials being extremized by natural selection,
since maximal fitness (ATP production) follows from max-
imization of the proton concentration gradient, which does
not bear a simple physical relationship to the redox poten-
tials. Direct evolutionary selection for extremized redox
potentials is implausible statistically as well as biophysi-
cally, based on additional data regarding the distribution of
potentials within the cytochrome c0 family, whose mem-
bers may be perceived as points along a single dynamical
evolutionary trajectory. Two out of four members (cyto-
chrome c0 Chromatium vinosum and cytochrome c0

Rhodospirillum rubrum) have redox potentials at the lower
extreme (� 5 and�8 mV, respectively) and two members
(cytochrome c0 Alcaligenes denitrificans and cytochrome
c0 Rhodopseudomonas palustris) have potentials

�100 mV and �130 mV [9]. Hence, it appears that the
redox potentials of naturally occurring cytochromes are not
only extremized, but may be alternately maximized and
minimized during the course of evolution through a pro-
cess that requires relatively few mutations. Even if evolu-
tionary selection did act directly on the redox potentials, it
would be necessary to assume the selection pressure oscil-
lates due to environmental dynamics that have no relation
to the known function of the ETC. Such a model is not
robust to functional form misspecification of the fitness
measure, and must be rejected if a simpler fitness measure
requiring fewer extrinsic parameters can explain the
extremization.

Optimal control theory provides an explanation for the
observed behavior that is fully consistent with current
evolutionary theory, based on minimal additional assump-
tions. The terminal oxidation stage of the electron transport
chain consists of a linked set of protein-catalyzed substrate
oxidation steps, several of which are coupled to protein-
catalyzed proton pump steps. Electron transfer to the redox
centers alters the pKa of amino acids involved in proton
transport and hence indirectly impacts the efficiency of the
proton pumps [12]. The ith enzyme acts on its substrate
through a redox process specified by the potential "i�t� as a
function of evolutionary time t. The role of this ith enzyme
in the fitness measure can be characterized by its current
evolutionary state xi (i.e., the proton gradient produced by
its associated proton pump) prescribing the functional
utility of the enzyme for the energy transduction process.
Since the efficiency of the proton pumps is a function of the
redox potentials, it is natural to view the network as an
input-output control system, with the controls consisting of
~"�t� � �"1�t�; "2�t�; � � � ; "N�t�� and the output being the
system state vector x�t� � �x1�t�; x2�t�; � � � ; xN�t��.
Evolution is assumed to be maximizing a biologically
beneficial function ��x� of the chain’s state (i.e., the total
amount of ATP produced) both directly with respect to the
state x as well as indirectly through the controls ~"�t�.

This evolution of the chain can be modeled in terms of
the coevolutionary dynamics [13] of coupled quasispecies
sequence families A and B, corresponding to each protein’s
state and control sequences, respectively. These families
are described by the multinomial probability distributions

 PA � fak j 1 � k � n � ��g

PB � fbk j 1 � k � m � ��g;

where � is the monomer alphabet length and �, � are the
respective sequence lengths. Associated with each state
sequence Ak is the value Fk 2 R of a component of the
associated physical state vector x of the protein network
(respectively Hk for the control vector ~"). The expected
values of the components of the state and control vectors of
the protein network are then xi � hxii �

Pn
k�1 F

�i�
k a
�i�
k ,

"i � h"ii �
Pm
k�1 H

�i�
k b
�i�
k . The tertiary structure of the

protein microenvironment surrounding the redox center

FIG. 1. The shift in redox potential from the wild-type value
("WT � 0) for active site mutants of several different cyto-
chromes and iron-sulfur cluster proteins. Maximum likelihood
estimation was employed to quantify the extent to which the
proteins have evolved toward a redox potential extremum [12].
The likelihood that the true redox potential distribution is
unbiased is listed below each protein.
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[12] constrains "i�t� to a finite range

 "li�t� � "i�t� � "ui �t�: (1)

Because protein tertiary structure is less flexible than sec-
ondary structure, it is reasonable to assume the bounds
"li�t� and "ui �t� vary at a slower rate than the redox potential
"i�t� during evolution.

According to the quasispecies model [1], the evolution
of the multinomial distribution PA is given by

 _a k �
Xn
l�1

WklRl�PB�al �Dk�PB�ak;

whereWkl is the probability of producing sequence Al as an
error copy from sequence Ak, Rl is the rate parameter for
autocatalytic replication, and Dk is the rate constant for
decay of sequence Ak. The effect of the control sequence B
on the evolutionary dynamics of the state sequence is
represented by the functional dependencies on PB of the
rate constants Rl�PB�, Dk�PB�, which to first-order, can be
written Rl�PB� � R0

l �
Pm
r�1 R

0
lrbr. In the realistic case

that PA and PB are sharply peaked with small variance
around a master sequence, h"ii 	 Hmaxbmax, and we may
write Rl�PB� � R0

l � R
0
lbmax. The rate parameters R0

l and
D0
k are determined by the function ��x� in the fitness

measure. It is then straightforward to show that the evolu-
tion of the expectation value of each component of the state
vector can be written dxi�t�

dt � fi�xi�t�; Wkl; Fk; R
0
l ; D

0
k; t��

gi�xi�t�; Wkl; Fk; R0l; D
0
k; Hmax; t�"i�t�. If interactions are

permitted between state vector components xi�t�, this can
be written compactly as

 

dxi�t�
dt

� fi�x�t�; t�� gi�x�t�; t�"i�t�: (2)

A coupled differential equation may be written for d"i�t�
dt ,

which is a function of the same parameters, since the
replication of sequence B is contingent on that of A due
to their physical linkage within the same protein.

We note that the above evolutionary dynamics frame-
work is based solely on the quasispecies theory and the
known function of the ETC. We now show that the ob-
served extremization implies that the rate parameters R0lr
and D0ks have been set such that the ~"�t�’s are optimal for
maximizing the increase in evolutionary fitness in a given
evolutionary time step dt. This entails a maximization of
��x� with respect to the controls ~"�t�, subject to the
inequality constraint in Eq. (1) and the dynamical con-
straint in Eq. (2). It is convenient to rewrite the inequality
constraint in the form of an equality through the introduc-
tion of so-called slack variables �i�t� where

 Gi�t� � Gi�"i; "
l
i; "

u
i ; �i� (3)

 � �"i�t� � "
l
i�t���"

u
i �t� � "i�t��� �

2
i �t� � 0: (4)

When each of these slack variables �i�t� is allowed to take
on arbitrary real values, then the equality constraint in
Eq. (3) is consistent with Eq. (1). We may now define the

fitness measure J as having the following form:
 

J � ��x� �
X
i

Z T

0
�i�t�Gi�t�

�
X
i

Z T

0
�i�t�

�
d
dt
xi � fi � gi"i�t�

�
dt: (5)

The introduction of the Lagrange multiplier functions �i�t�
and �i�t� will assure that Eqs. (2) and (3) are satisfied,
respectively. Equation (5) leads to the biological evolu-
tionary process expressed as max ~"�t�J. Maximization of J
can be treated as a problem in the calculus of variations,
with the unknown functions being the elements of the
vectors ~", ~�, ~�, x, ~�. A variation of J with respect to these
functions will produce a set of nonlinear equations whose
solution would specify the state of the evolving protein
network from its initial condition at t � 0 to the current
time T. Since we have not completely specified the func-
tions fi�x�t�; t� and gi�x�t�; t� in Eq. (2), a detailed study of
the evolutionary dynamics cannot be carried out here.
However, for our purpose of analyzing the mutation data
above, we do not need this level of detail. It is sufficient to
only consider variations of J with respect to ~�, ~�, and ~",
which produce the following equations:

 

�J
��i�t�

� �2�i�t��i�t� � 0; (6)

 

�J
��i�t�

� Gi�t� � 0; (7)

 

�J
�"i�t�

� �i�t�
�2"i�t� � "
l
i�t� � "

u
i �t�� � �i�t�gi�t� � 0:

(8)

We may now analyze the evolutionary consequences of
these equations. First, Eq. (6) implies that either �i�t� � 0
or �i�t� � 0. Considering the first case, �i�t� � 0, it is evi-
dent from Eqs. (3) and (7) that the redox potential "i�t�
must take on the value "i�t� � "ui �t� or "i�t� � "li�t�. We
may then solve for �i�t� from Eq. (8) by first defining di as

 di � �2"i�t� � "li�t� � "
u
i �t�

�

�
"ui �t� � "

l
i�t�; "i�t� � "li�t�;

"li�t� � "
u
i �t�; "i�t� � "ui �t�;

(9)

such that

 �i�t� � ��i�t�gi�t�=di�t�: (10)

The second circumstance, �i�t� � 0, implies that �i�t� is
free to take on any value prescribed by Eq. (3), given that
"i�t� is restricted to the domain specified in Eq. (1). In this
case, it is also evident from Eq. (8) that �i�t�gi�t� � 0,
which is expected to only be valid at discrete times t �
tn; n � 1; 2; � � � . These time points tn denote the locations
where the control field ‘‘bangs’’ from one extreme limit of
the range to the other in Eq. (1) during evolution.

This behavior may be explicitly seen by considering the
curvature
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�2J
��i�t���i�t0�

� �2�i�t���t� t0�< 0; (11)

where ��t� t0� is a Dirac delta function, and the inequality
corresponds to requiring that J be maximized. Thus, for the
case "i�t� � "ui �t� in Eq. (9), it follows that di < 0, thereby
corresponding to �i�t�gi�t�> 0, to assure that Eq. (11) is
satisfied. Similarly, in the opposite case of "i�t� � "li�t�, we
have that di > 0 and that �i�t�gi�t�< 0. The points tn; n �
1; 2; � � � correspond to the times at which �i�t�gi�t�
changes sign by passing through zero. This behavior is
indicated in Fig. 2. The possible evolution of the extremum
values "li�t� and "ui �t� is also indicated in the figure.

Importantly, the redox potential data above [7–11] are
fully consistent with this analysis of bang-bang control
behavior. That is, at the present evolutionary time T,
each redox potential "i�T� should be at a locally accessible
extreme value. The introduction of artificial mutations in
the laboratory could then only take "i�T� away from its
extreme value in a consistent direction for each protein, as
found above. Moreover, assuming members of the cyto-
chrome c0 family lie along the same evolutionary trajec-
tory, their alternatively maximized and minimized redox
potentials are consistent with the above model for t < T.
We emphasize that this finding of optimality is based solely
on statistical inference and variational calculus and does
not imply anything about the mechanism by which opti-
mality is achieved. However, the required tuning of the rate
constants R0lr, D

0
ks to optimal constant values is straightfor-

ward to achieve via reorganization of the protein’s tertiary
structure [12] through genetic recombination, and avoids
the biophysically implausible assumption of direct evolu-
tionary selection for redox potential extremization on an
oscillating fitness landscape.

It is important to consider the consequences of J in
Eq. (5) containing other costs on the redox potential con-

trols, such that J ! J� C. A biologically plausible sce-
nario corresponds to

 C � !
X
i

Z T

0

�
d"i�t�
dt

�
2
dt:

This places a cost on the rate at which control changes
occur due to the quasispecies error threshold, which limits
the number of mutations that can be borne by an evolving
population per generation [14]. In this case, bang-bang
control can still be produced, but with a rounding-off of
the sharp corners at the jump times [12].

A natural question concerns the generality of optimal
control phenomena in evolutionary dynamics. Optimal
control could in principle be operational in any system
where evolution of the central function of a protein net-
work is coupled to the evolution of an ancillary protein
function. Our results indicate that it is worthwhile to
investigate whether the evolutionary dynamics of other
biochemical networks with coupled functions exhibit the
characteristic signatures of being under optimal control.
Bang-bang extremization, while not the only such signa-
ture, is simple to detect and provides compelling evidence
for underlying OC phenomena. Such optimal control strat-
egies have a particularly natural interpretation within the
general framework of evolutionary optimization.
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FIG. 2 (color online). (a) The evolution of the redox potential
"i�t� for the ith enzyme within optimal control theory. The early
evolutionary period near t 	 0 is unspecified. During evolution,
the potential ‘‘bangs’’ from its lower and upper accessible val-
ues, "li�t� and "ui �t�, respectively, at critical times t1; t2; � � � where
effective mutations have occurred. The current evolutionary time
is T. (b) The evolutionary time dependence of the product �igi of
the Lagrange function �i and the control coupling function gi.
The zero crossings of �igi occurs at t1; t2; � � � where the redox
potential "i�t� undergoes evolutionary jumps in (a).
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