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This note studies the Dyson series expansion for landscape first-order variation, applying the Cayley-

Hamilton theorem in order to obtain a necessary condition for local controllability given the uniformly

bounded controls and control variations that are typically encountered over the course of control field

optimization. The condition is suggested to be an indicator for whether dynamical properties of the

control system may slow control optimization; it can be checked for various control systems of interest in

quantum computation. If the condition is satisfied, convergence rate may be only weakly influenced by

dynamical properties of the control system. To the extent that diverse quantum systems may satisfy the

condition at low field strengths, it may help characterize the “scale similarity” of control optimization

search effort.

1 Necessary condition for local operator controllability: Dyson

series representation

Let H0 denote the skew-symmetric matrices obtained by multiplying the field-free Hamiltonian by ı. The

controlled unitary propagator (in the interaction picture) can be expressed in terms of the Dyson series

expansion (ref):
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where V (t) = exp(−iH0t); U(t) = V (t)UI(t)V
†(t), and where in the last line we have applied the Cayley-

Hamilton theorem, which states that the matrix exponential V (t) can be expressed as a matrix polynomial

of (at most) order N : V (t) = a0(λ, t)IN + a1(λ, t)(iH0) + · · ·+ aN−1(λ, t)(iH0)
N−1 where λ denotes the

vector of eigenvalues of (i)H0. (This follows because any matrix An in the matrix Taylor series for exp(A)

can be written as a linear combination of Ai, 1 ≤ i ≤ N − 1, due to the fact that the matrix A satisfies

its own characteristic polynomial. Note that
∑N−1

i,j=0 ai(t)H
i
0 is unitary, and

∑N−1
i,j=0 ai(t)aj(t)H

i
0µH

j
0 is

Hermitian, although the individual terms in these sums need not be. For skew-symmetric matrices A,

ıai ∈ R.) We henceforth use units ~ = 1.

The convergence of series (1) can be proven for fields ε(t) of arbitrary power, as follows. Let

|⟨x|
∑N−1

i,j=0 H
i
0µH

j
0ε(t)|y⟩| < c, 1 ≤ x, y ≤ N . (|⟨x|ε(t)V (t)µV †(t)|y⟩| < c), for some positive constant c.

Then ∣∣∣∣∣∣
N∑

x1=1

· · ·
N∑

xk−1=1

∫ T

0

⟨x|ε(t)V †(t)µV (t)|x1⟩ · · ·
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=
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Thus

|⟨x|UI(T )|y⟩| ≤
∞∑
k=0

NkT kck

Nk!
+ 1

≤ 1

N
exp(NTc) + 1, (2)

and for any uniform bound on the field intensity, we have a bound on the magnitude of the elements

of the interaction picture propagator. Since the series is absolutely bounded from above, it converges.

For a specified convergence tolerance d, there exists an integer n such that the series in the interaction

picture converges at order n - i.e., denoting by ϵn ≡ |⟨x|UI(T )− Un
I (T )|y⟩| the maximum error residual

of the series (1) for all x, y at order n, ϵn ≤ d. Denote by Un
I (ε(·), T ) the series (1) truncated at order n.

Unlike the Lie algebra rank condition for bilinear system controllability, which applies for uncon-

strained controls, a controllability condition based on the Dyson series expansion (1) can be formulated

for uniformly bounded controls, which is useful for our purposes. Define d-approximate operator control-

lability as the existence, for each W ∈ U(N), of a control ε(t) such that |⟨x|U(ε, T ) −W |y⟩| ≤ d. Now

consider the 2N2×N2n matrix F d
c whose rows consist of the real and imaginary parts of the elements of

Hi
0µH

j
0 ,H

i
0µH

j
0H

k
0µH

l
0, · · · and whose columns are indexed by all combinations 0 ≤ i, j, k, l, · · · ≤ N − 1

up to order n, according to equation (1). We prove

Theorem 1 A necessary condition for the d-approximate operator controllability of the quantum system

with uniform bound c on |⟨x|
∑N−1

i,j=0 H
i
0µH

j
0ai(t)aj(t)|y⟩|ε(t), x, y = 1, · · · , N is rank F d

c ≥ N2, i.e.,

that F d
c has at least N2 linearly independent rows (or equivalently, columns).

Proof. Let K = L2[0, T ] denote the space of control fields on [0, T ], and denote by ν(X) the vec-

torization of a N × N complex matrix X into a 2N2-dimensional real vector. Operator controllability

is equivalent to the requirement that the map U(ε, T ) : K → U(N) is onto. Assume that for each

of a linearly independent set of N2 + 1 linearly independent vectors v ∈ R2N2

, the inner product

⟨v,
∑N−1

i,j=0 ν(H
i
0µH

j
0)uij +

∑N−1
i,j,k,l=0 ν(H

i
0µH

j
0H

k
0µH

l
0)uijkl + · · · ⟩ = 0 for all uij , uijkl, · · · ∈ R. If such

a set of v’s exists, rank F < N2. Then ⟨v, ν(Hi
0µH

j
0µ · · · )⟩ = 0, 0 ≤ i, j, · · · ≤ N − 1 for each v. It

follows that for each v, ⟨v, ν(Hi
0µH

j
0µ · · · )ε(t)⟩ = 0 for all ε(t) satisfying the above bound. The converse
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is not true1, since ⟨v, Un
I (ε(·), T )⟩ = 0 for all ε(·) does not imply ⟨v, ν(Hi

0µH
j
0µ · · · )⟩ for all i, j, k, l, · · · ,

since all integrals in the series (1) for Un
I (ε(·), T ) need not be independent. �

In practice, for any nonzero d, it is possible that rank F d
c > N2, since Un

I need not be unitary.

However, our primary interest is in comparing the eigenvalue spectra of F d
c for various control systems.

The first order variation in the interaction picture propagator due to a variation δε(t) in the control

is

δUI(T ) = i
N−1∑
i,j=0

Hi
0µH

j
0

∫ T

0

ai(t)aj(t)δe(t
1) dt1+

−
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i,j,k,l=0
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j
0H

k
0µH

l
0

[ ∫ T

0

ai(t
1)aj(t

1)δε(t1)

∫ t1

0
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0
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1)aj(t

1)e(t1)

∫ t1

0

ak(t
2)al(t

2)δε(t2) dt2dt1
]
+ · · · (3)

so the functional Jacobian, which appears in the landscape gradient eqn (6), is

δUI(T )

δε(t)
=

N−1∑
i,j=0

Hi
0µH

j
0ai(t

1)aj(t
1)+

+
N−1∑

i,j,k,l=0

Hi
0µH

j
0H

k
0µH

l
0

[
ak(t

2)al(t
2)

∫ T

0

ai(t
1)aj(t

1)ε(t1)dt1 + ai(t
1)aj(t

1)

∫ t1

0

ak(t
2)al(t

2)ε(t2) dt2

]
+ · · ·

=
N−1∑
i,j=0

Hi
0µH

j
0ai(t)aj(t)+

N−1∑
i,j,k,l=0

Hi
0µH

j
0H

k
0µH

l
0

[
ak(t)al(t)

∫ T

0

ai(t
1)aj(t

1)ε(t1) dt1 + ai(t)aj(t)

∫ t

0

ak(t
1)al(t

1)ε(t1) dt1

]
+ · · ·

(4)

because t1, t2, t3, · · · are dummy variables. This entails the dynamical contribution to the landscape

gradient equation (6). Let ϵn ≡ |⟨x|δUI(T ) − δUn
I (T )|y⟩| denote the error residual of the series (3) for

element x, y at order n. To derive a bound on the error residual for the series expansion for the first

1The analogous Kalman controllablity rank condition is sufficient for linear systems.
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variation at order n, consider the norms of the elements ⟨x|δUI(T )|y⟩ of the first variation:

∣∣⟨x| N−1∑
i,j=0

Hi
0µH

j
0

∫ T

0

ai(t)aj(t)δe(t
1) dt1+

N−1∑
i,j,k,l=0

Hi
0µH

j
0H

k
0µH

l
0

[ ∫ T

0

ai(t
1)aj(t

1)δε(t1)

∫ t1

0

ak(t
2)al(t

2)ε(t2) dt2dt+ · · ·

+

∫ T

0

ai(t
1)aj(t

1)e(t1)

∫ t1

0

ak(t
2)al(t

2)δε(t2) dt2dt1
]
+ · · · |y⟩

∣∣
≤

∞∑
i=1

bT i(Nc)i−1

(i− 1)!
= bT exp(NTc). (5)

where b ≥ |⟨i|
∑N−1

i=0 Hi
0µH

j
0ai(t)aj(t)δε(t)|j⟩|, ∀ 0 ≤ t ≤ T . Thus we have

Lemma 1 If the upper bound on the error residual ϵn for the propagator series (1), computed from

equation (2) is d, the corresponding upper bound for the error residual ϵn for series (3) is ..., since if

| 1N exp(NTc)−
∑n

i=0
(NTc)i

Ni! | ≤ d, then |bT exp(NTc)−
∑n

i=1
bNiT ici−1

(i−1)! | ≤ .....

Define d-approximate local controllability as the existence, for each δW ∈ TWU(N), of a control

variation δε(t) such that |⟨x|δU(ε, T ) − δW |y⟩| ≤ d. Let F d
b,c be defined analogously to F d

c above. We

now prove that

Theorem 2 A necessary condition for the d-approximate local controllability (nonsingularity of the

Gramian matrix Gε(T )) of the quantum system with uniform bound b on |⟨x|
∑N−1

i,j=0 H
i
0µH

j
0ai(t)aj(t)|y⟩|δe(t)

and uniform bound c on |⟨x|
∑N−1

i,j=0 H
i
0µH

j
0ai(t)aj(t)|y⟩|ε(t) is that rank F d

b,c ≥ N2, i.e., that F d
b,c has

N2 linearly independent rows (or equivalently, columns).

Proof. -Local controllability- is equivalent to the requirement that the map dVT : δε(·) → TUU(N) is

onto. Assume that for each of a set of N2 + 1 linearly independent vectors v ∈ R2N2

, the inner product

⟨v,
∑N

i,j=1 ν(H
i
0µH

j
0)uij +

∑N
i,j,k,l=1 ν(H

i
0µH

j
0H

k
0µH

l
0)uijkl + · · · ⟩ = 0 for all uij , uijkl, · · · ∈ R. If such

a set of v’s exists, rank F < N2. Then ⟨v, ν(Hi
0µH

j
0 · · · )⟩ = 0, 0 ≤ i, j, · · · ≤ N − 1. It follows that

⟨v,
∑N−1

i,j,···=0 ν(H
i
0µH

j
0 · · · )δε(t)⟩ = 0, for all δε(t) satisfying the bound above. The converse is not true

for bilinear systems, since ⟨v, δUn
I (δε(·), T )⟩ = 0 for all δε(·) does not imply ⟨v, ν(Hi

0µH
j
0)⟩ = 0 for all

i, j. Hence rank F d
c < N2 implies rank Gε(T ) < N2 but not vice versa. �

Direct computation of rank F may be numerically inconvenient since the dimensions of F scale steeply

with n, and in the absence of mechanistic information, n must be computed according to the bound on
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field amplitude. An analysis that surmounts these limitations, based on the CBH expansion for the

controlled propagator, is in progress. However, since F is time-independent, unlike G(T ), and only

depends on the control through the bounds in eqn (8) and Lemma 1, it allows analytic assessment of

necessary conditions for local controllability 2.

The condition number of the time-invariant matrix F d
b,c can significantly affect the convergence rate

of optimization algorithms, since a high condition number implies that generation of certain directions in

TUU(N) (which may be necessary to attain the target transformation W ) requires higher field intensities

and/or particular field modes in δε(t), which may not be locally accessible by the trajectory (7) of first-

order optimization algorithms. Because of the relation in Lemma 1, the Dyson series for the first-order

variation (3) converges at roughly the same order as the series (1) for UI(T ). b is determined by the

uniform bound (8) on δε(t) in first-order gradient-based optimization algorithms (7). Thus in gradient

flow algorithms, where δε(s, t) = δJ(εs)
δε(t) , search trajectories with ill-conditioned controllability matrices

Fs may only slowly add field modes contained in the functions ℜ⟨i|µ(t)|j⟩, ℑ⟨i|µ(t)|j⟩ to εs(t).

Thus we conclude that the rate at which the rate at which rank F is saturated with respect to

Dyson series order n, or equivalently the rate at which the dynamical Lie algebra is saturated by the

nested commutators [Hi1 , · · · , [Hik−1
,Hik ]], plays an important role – in addition to the trap-free control

landscape topology – in explaining the observed rapid convergence to optimal gate controls for certain

Hamiltonians. Subsequent work will explore these properties for diverse quantum systems of interest for

computation.

The initial field guess ε0(t) for quantum control optimization algorithms is often parameterized in

terms of frequency modes corresponding to direct (single photon) transitions. However, direct transitions

are typically insufficient to achieve an arbitrary unitary transformation (or even arbitrary state-state

transition) in a prescribed time. Full controllability of the quantum system, which is required to reach

2The Gramian matrix G is the analog of the local controllability Gramian that arises classical control engineering of

time variant (non)linear systems. F is the bilinear analog of the Kalman controllability matrix, which provides sufficient

conditions for controllability for time-invariant linear systems. F introduced above provides necessary, but not sufficient

conditions for local controllability of bilinear systems with constrained controls.
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any W ∈ U(N), typically requires the introduction of Lie algebra directions corresponding to higher

order commutators [Hi1 , · · · , [Hik−1
,Hik ]] (where Hij denotes one of the set {H0, µ}), which only enter

the Dyson series in higher order terms (ref). Higher order terms in the Dyson expansion are required

in the optimal control mechanism (ref) for control systems with greater dynamical Lie algebra depth,

which corresponds to higher n and column rank in F d
c . Moreover, the amplitudes of these field modes

must increase with the depth of the commutator to which they correspond (order at which the

product Hi
0µH

j
0 enters the Dyson series). In principle, field modes corresponding to higher order terms

in the Dyson series could be incorporated into ε0(t), but the Dyson integrals are expensive to compute

numerically. Generally, field modes contributing to higher order series terms must be incorporated into

the control over the course of the optimization trajectory (7).

Restrictions on the power spectrum of δε(t) can also exclude higher series orders from contributing

to δUI(T ) within a given convergence tolerance, according to quantum control mechanism analysis (hr

check). For any given δε(t), it is possible to determine with mechanism analysis which modes contribute

dominantly to the series expansion (ref). The gradient δJ
δε(t) at any step of control optimization can only

introduce field modes contained within functions ℜ⟨i|µ(t)|j⟩, ℑ⟨i|µ(t)|j⟩ in fixed relative amplitudes.

Assuming that the field modes contributing to higher order Dyson series terms do not have large ampli-

tudes in δJ
δε(t) at the outset of optimization, their amplitudes must be progressively increased over the

optimization trajectory. The Hessian (curvature) determines the rate at which modes can be added to

δε(t) in new relative proportions, with magnitude of the eigenvalues of the Hessian being proportional

to the rates at which the new modes contained within the eigenfunctions of H(t, t′) are added.
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2 Necessary condition for local operator controllability: Mag-

nus series representation

In the Magnus series representation, UT (ε(t)) = exp(AT (ε(t)), where

AT (ε(t)) = H0 − µε(t)− 1

2!
[H0, µ]

∫ T

0

∫ t′

0

ε(t”)− ε(t′) dt”dt′ − 1

12
[H0, [H0, µ]]

∫ T

0

∫ t′

0

∫ t”

0

ε(t′′′)− ε(t”) dt′′′dt”dt′+

− 1

4
[H0, [H0, µ]]

∫ T

0

∫ t′

0

∫ t”

0

ε(t′′′)− ε(t”) dt′′′dt”dt′+

+
1

12
[µ, [H0, µ]]

∫ T

0

ε(t′)

∫ t′

0

∫ t”

0

ε(t′′′)− ε(t”) dt′′′dt”dt′+

+
1

4
[µ, [H0, µ]]

∫ T

0

ε(t′)

∫ t′

0

∫ t”

0

ε(t′′′)− ε(t”) dt′′′dt”dt′ + · · · .

In this representation we may write

UT (ε(t)) + δUT (δε(t)) = UT (ε(t)) exp[AT (δε(t))]

δUT

δε(t)
=

δ

δε(t)

{
UT (ε(t)) exp

[
H0 − µδε(t)− 1

2!
[H0, µ]

∫ T

0

∫ t′

0

δε(t”)− δε(t′) dt”dt′ − · · ·

]}
|δε(·)=0

= UT (ε(t))

{
µ− 1

2!
[H0, µ]

∫ t

0

dt− 1

2!
[H0, µ]

∫ T

0

∫ t′

0

Tδε(t′)dt′ − 1

4
[µ, [H0, µ]]

(∫ T

0

ε(t′)

∫ t′

0

∫ t”

0

δε(t′′′)− δε(t”) dt′′′dt”dt′ +

∫ T

0

∫ t′

0

∫ t”

0

ε(t′′′)− ε(t”) dt′′′dt”dt′

)
− · · ·

}

= U(T )

{
µ− 1

2!
[H0, µ](T − t)− 1

4
[H0, [H0, µ]](

T 2

2!
− Tt) + · · ·

}

So in the Magnus expansion

µ(t) = U†(T )
δUT

δε(t)
= µ− 1

2!
[H0, µ](T − t)− 1

4
[H0, [H0, µ]](

T 2

2!
− Tt) + · · · .

However, the Magnus expansion has a finite radius of convergence, and the above expression is derived

under the assumption that the expansion for UT (ε(t)) converges. Hence it is necessary to subdivide

the domain of integration into intervals, on each of which the expansion for UT (ε(t)) is guaranteed to
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converge. Thus we write

U(T ) = U(T, tn−1) · · ·U(t2, t1)

U(T ) + δU(T ) = U(T, tn−1) exp(A(T, tn−1))U(tn−1, tn−2) · · ·U(t2, t1) + · · ·+ U(T, tn−1) · · ·U(t2, t1) exp(A(t2, t1))

δU(T )

δε(t)
= U(T, tn−1) exp(A(T, tn−1))U(tn−1, tn−2) · · ·U(t2, t1) + · · ·+ U(T, tn−1) · · ·U(t2, t1) exp(A(t2, t1))ε(·)=0

= {U(T, tn−1)A(T, tn−1)U(tn−1, tn−2) · · ·U(t2, t1) + · · ·+ U(T, tn−1) · · ·U(t2, t1)A(t2, t1)}ε(·)=0

Note this requires us to keep matrix exponentials and hence does not allow analytic characterization

of the necessary conditions for local controllability. Instead, we consider local controllability on each

interval [ti, ti+1], which if satisfied for all i, implies local controllability on [0, T ] since U(N) is a compact

Lie group that be finitely generated. (This is analogous to the classic treatment of local controllability

of time-variant nonlinear systems, without the approximation of linearization.) Thus consider

U(ti+1, ti) + δU(ti+1, ti) = U(ti+1, ti) exp(A(ti+1, ti))

From the above analysis, we have as a necessary and sufficient condition for local operator controllability∫ T

0

ν([µ(t), ρ(0)])νT ([µ(t), ρ(0)]) dt

is full rank, which implies that the map dερT : K →→ Tρ(T )OU(N)[ρ(0)] is surjective. Note this is not an

analytic condition. Analytically, a necessary condition is (need to do convergence analysis for truncation

of Magnus series, probably in interaction pict):

rank {[[H0, µ], ρ(0)], [[H0, [H0, µ]], ρ(0)], [[µ, [H0, µ]], ρ(0)], · · · } = dim

(
U(N)

U(m1)× · · · × U(mn)

}
.

Comparing the necessary and sufficient condition for global state controllability, we note that the local

controllability condition with bounded controls does not involve all elements of the Lie algebra generated

by H0, µ. Operate under assumption of uniformly bounded field; hence ε(t), t ∈ [ti, ti+1] is bounded by

the same constant for all i. Then, the necessary local controllability condition becomes identical on each

interval and hence only one condition need be checked.
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A Landscape gradient and bounds on first-order variation

δJ

δε(t)
= −iTr

([
W †U(T, 0)− U†(T, 0)W

]
U†(t, 0)µU(t, 0)

)
= 0. (6)

∂ε(s, t)

∂s
= α(s)

δJ

δε(s, t)
, (7)

|∇J(ε(t))| ≤
√
T2N ||µ||, (8)
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